150
Views
3
CrossRef citations to date
0
Altmetric
Articles

Poleward translation of vortices due to deep thermal convection on a rotating planet

&
Pages 821-834 | Received 19 Jul 2019, Accepted 14 Nov 2019, Published online: 28 Nov 2019

References

  • Adriani, A., Mura, A., Orton, G., Hansen, C., Altieri, F., Moriconi, M.L. and Filacchione, G., Clusters of cyclones encircling Jupiter’s poles. Nature 2018, 555, 216–219. doi: 10.1038/nature25491
  • Afanasyev, Y.D., High-latitude westward jets in the Earth’s outer core due to small-scale convection. Geophys. Res. Lett. 2018, 45, 7454–7461. doi:10.1029/2018GL078550.
  • Afanasyev, Y.D. and Zhang, Y., Cyclonic circulation of Saturn’s atmosphere due to tilted convection. Nature Geosci. 2018, 11, 164–167. doi: 10.1038/s41561-018-0070-3
  • Bühler, O. and McIntyre, M., Remote recoil: A new wave–mean interaction effect. J. Fluid Mech. 2003, 492, 207–230. doi: 10.1017/S0022112003005639
  • Brueshaber, S.R., Sayanagi, K.M. and Dowling, T.E., Dynamical regimes of giant planet polar vortices, Icarus, 2019, 323, 46–61. doi: 10.1016/j.icarus.2019.02.001
  • Davidson, P., Turbulence in Rotating, Stratified and Electrically Conducting Fluids, 2013 (Cambridge: Cambridge University Press).
  • Davidson, P.A. and Ranjan, A., Planetary dynamos driven by helical waves – II. Geophys. J. Int. 2015, 202, 1646–1662. doi: 10.1093/gji/ggv232
  • Dowling, T.E., A relationship between potential vorticity and zonal wind on Jupiter. J. Atmos. Sci. 1993, 50, 14–22. doi: 10.1175/1520-0469(1993)050<0014:ARBPVA>2.0.CO;2
  • Dowling, T.E. and Ingersoll, A.P., Jupiter’s Great Red Spot as a shallow water system. J. Atmos. Sci. 1989, 46, 3256–3278. doi: 10.1175/1520-0469(1989)046<3256:JGRSAA>2.0.CO;2
  • Dyudina, U.A., Ingersoll, A.P., Ewald, S.P., Vasavada, A.R., West, R.A., Del Genio, A.D., Barbara, J., Porco, C.C., Achterberg, R., Flasar, F., Simon-Miller, A. and Fletcher, L.N., Dynamics of Saturn’s south polar vortex. Science, 2008, 319, 1801. doi: 10.1126/science.1153633
  • Flor, J.B. and Eames, I., Dynamics of monopolar vortices on a topographic beta-plane. J. Fluid Mech. 2002, 456, 353–376. doi: 10.1017/S0022112001007728
  • Gastine, T., Wicht, J., Duarte, L., Heimpel, M. and Becker, A., Explaining Jupiter’s magnetic field and equatorial jet dynamics. Geophys. Res. Lett. 2014, 41, 5410–5419. doi: 10.1002/2014GL060814
  • Greenspan, H.P., The Theory of Rotating Fluids, 1968 (Cambridge: Cambridge University Press).
  • Kaspi, Y., Flierl, G.R. and Showman, A.P., The deep wind structure of the giant planets: results from an anelastic general circulation model. Icarus, 2009, 202, 525–542. doi: 10.1016/j.icarus.2009.03.026
  • Kaspi, Y., Galanti, E., Hubbard, W.B., Stevenson, D.J., Bolton, S.J., Iess, L., Guillot, T., Bloxham, J., Connerney, J.E.P., Cao, H., Durante, D., Folkner, W.M., Helled, R., Ingersoll, A.P., Levin, S.M., Lunine, J.I., Miguel, Y., Militzer, B., Parisi, M. and Wahl, S.M., Jupiter’s atmospheric jet streams extend thousands of kilometres deep. Nature, 2018, 555, 223–226. doi: 10.1038/nature25793
  • Lighthill, J.M., On waves generated in dispersive systems by travelling forcing effects, with applications to the dynamics of rotating fluids. J. Fluid Mech. 1967, 27, 725–752. doi: 10.1017/S0022112067002563
  • Liu, J., Goldreich, P.M. and Stevenson, D.J., Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus, 2008, 196, 653–664. doi: 10.1016/j.icarus.2007.11.036
  • Loper, D.E., On the structure of a Taylor column driven by a buoyant parcel in an unbounded rotating fluid. J. Fluid Mech. 2001, 427, 131–165. doi: 10.1017/S0022112000002378
  • Marshall, J., Adcroft, A., Hill, C., Perelman, L. and Heisey, C., A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 1997a, 102, 5753–5766. doi: 10.1029/96JC02775
  • Marshall, J., Hill, C., Perelman, L. and Adcroft, A., Hydrostatic, quasi-hydrostatic and non-hydrostatic ocean modeling. J. Geophys. Res. 1997b, 102, 5733–5752. doi: 10.1029/96JC02776
  • McDermott, B.R. and Davidson, P.A., A physical conjecture for the dipolar–multipolar dynamo transition. J. Fluid Mech. 2019, 874, 995–1020. doi: 10.1017/jfm.2019.495
  • Moffatt, H.K., Liquid metal MHD and the geodynamo. In Liquid Metal Magneto-hydrodynamics, edited by J. Lielpeteris and R. Moreau, pp. 403–412, 1989 (Dordrecht: Kluwer Academic Publishers).
  • Moffatt, H.K. and Loper, D.E., The magnetospheric rise of a buoyant parcel in the Earth’s core. Geophys. J. Int. 1994, 117, 394–402. doi: 10.1111/j.1365-246X.1994.tb03939.x
  • O’Neill, M.E., Emanuel, K.A. and Flierl, G.R., Polar vortex formation in giant-planet atmospheres due to moist convection. Nature Geosci. 2015, 8, 523–526. doi: 10.1038/ngeo2459
  • O’Neill, M.E., Emanuel, K.A. and Flierl, G.R., Weak jets and strong cyclones: shallow-water modeling of giant planet polar caps. J. Atmos. Sci. 2016, 73, 1841–1855. doi: 10.1175/JAS-D-15-0314.1
  • Rabitti, A. and Maas, L.R.M., Meridional trapping and zonal propagation of inertial waves in a rotating fluid shell. J. Fluid Mech. 2013, 729, 445–470. doi: 10.1017/jfm.2013.310
  • Rossby, C.G., On displacements and intensity changes of atmospheric vortices. J. Mar. Res. 1948, 7, 175–187.
  • Sánchez-Lavega, A., Sromovsky, L.A., Showman, A.P., Del Genio, A.D., Young, R.M.B., Hueso, R., Garcia-Melendo, E., Kaspi, Y., Orton, G.S., Barrado-Izagirre, N., Choi, D.S. and Barbara, J.M., Gas giants. In Zonal Jets: Phenomenology, Genesis, and Physics, edited by B. Galperin and P.L. Read, pp.72–103, 2019 (Cambridge: Cambridge University Press).
  • Sheremet, V.A., Laboratory experiments with tilted convective plumes on a centrifuge: a finite angle between the buoyancy force and the axis of rotation. J. Fluid Mech. 1999, 506, 217–244. doi: 10.1017/S0022112004008572
  • Showman, A.P., Kaspi, Y. and Flierl, G.R., Scaling laws for convection and jet speeds in the giant planets, Icarus, 2011, 211, 1258–1273. doi: 10.1016/j.icarus.2010.11.004
  • Stewartson, K., On the slow motion of an ellipsoid in a rotating fluid. Q. J. Mech. Appl. Maths. 1953, 6, 141–162. doi: 10.1093/qjmam/6.2.141
  • Tabataba-Vakili, F., Rogers, J.H., Eichstädt, G., Orton, G.S., Hansen, C.J., Momary, T.W., Sinclair, J.A., Giles, R.S., Caplinger, M.A., Ravine, M.A. and Bolton, S.J., Long-term tracking of circumpolar cyclones on Jupiter from polar observations with JunoCam, Icarus, 2020, 335, 113405. doi:10.1016/j.icarus.2019.113405.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.