1,032
Views
2
CrossRef citations to date
0
Altmetric
Articles

Geophysical fluid models with simple energy backscatter: explicit flows and unbounded exponential growth

ORCID Icon, ORCID Icon & ORCID Icon
Pages 374-410 | Received 29 Jun 2021, Accepted 23 Nov 2021, Published online: 14 Feb 2022

References

  • Achatz, U., Gravity-wave breakdown in a rotating Boussinesq fluid: linear and nonlinear dynamics, Habilitation Thesis, University of Rostock, 2006.
  • Balmforth, N.J. and Young, Y.N., Stratified Kolmogorov flow. II. J. Fluid Mech. 2005, 528, 23–42.
  • Chai, J., Wu, T. and Fang, L., Single-scale two-dimensional-three-component generalized-Beltrami-flow solutions of incompressible Navier–Stokes equations. Phys. Lett. A 2020, 384, 126857.
  • Danilov, S., Juricke, S., Kutsenko, A. and Oliver, M., Toward consistent subgrid momentum closures in ocean models. In Energy Transfers in Atmosphere and Ocean, edited by C. Eden and A. Iske, pp. 145–192, 2019 (Springer-Verlag: Cham).
  • Drazin, P.G. and Riley, N., The Navier–Stokes Equations: A Classification of Flows and Exact Solutions, London Mathematical Society Lecture Note Series, Vol. 334, 2006 (Cambridge University Press: Cambridge).
  • Dyck, N.J. and Straatman, A.G., Exact solutions to the three-dimensional Navier–Stokes equations using the extended Beltrami method. J. Appl. Mech. 2019, 87, 011004.
  • Ghaemsaidi, S.J. and Mathur, M., Three-dimensional small-scale instabilities of plane internal gravity waves. J. Fluid Mech. 2019, 863, 702–729.
  • Jansen, M.F. and Held, I.M., Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Model. 2014, 80, 36–48.
  • Jansen, M.F., Adcroft, A., Khani, S. and Kong, H., Toward an energetically consistent, resolution aware parameterization of ocean mesoscale eddies. J. Adv. Model. Earth Syst. 2019, 11, 2844–2860.
  • Juricke, S., Danilov, S., Koldunov, N., Oliver, M., Sein, D., Sidorenko, D. and Wang, Q., A kinematic kinetic energy backscatter parametrization: from implementation to global ocean simulations. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002175.
  • Kalogirou, A., Keaveny, E.E. and Papageorgiou, D.T., An in-depth numerical study of the two-dimensional Kuramoto–Sivashinsky equation. Proc. R. Soc. A 2015, 471, 20140932.
  • Lelong, M.P. and Dunkerton, T.J., Inertia-gravity wave breaking in three dimensions. Part I: convectively stable waves. J. Atmos. Sci. 1998, 55, 2473–2488.
  • Majda, A., Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes in Mathematics, Vol. 9, 2003 (American Mathematical Society: Providence, RI). Courant Institute of Mathematical Sciences, New York University, New York.
  • Majda, A.J. and Wang, X., Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows, 2006 (Cambridge University Press: Cambridge).
  • Nicolaenko, B., Scheurer, B. and Temam, R., Some global dynamical properties of the Kuramoto–Sivashinsky equations: nonlinear stability and attractors. Physica D 1985, 16, 155–183.
  • Onuki, Y., Joubaud, S. and Dauxois, T., Simulating turbulent mixing caused by local instability of internal gravity waves. J. Fluid Mech. 2021, 915, A77.
  • Perezhogin, P.A., Testing of kinetic energy backscatter parameterizations in the NEMO ocean model. Russ. J. Numer. Anal. Math. Model. 2020, 35, 69–82.
  • Prugger, A. and Rademacher, J.D.M., Explicit superposed and forced plane wave generalized Beltrami flows. IMA J. Appl. Math. 2021, 86, 761–784.
  • Smyrlis, Y. and Papageorgiou, D., Predicting chaos for infinite dimensional dynamical systems: the Kuramoto–Sivashinsky equation, a case study. Proc. Natl. Acad. Sci. USA 1991, 88, 11129–11132.
  • Wang, C.Y., Exact solutions of the Navier–Stokes equations – the generalized Beltrami flows, review and extension. Acta Mech. 1990, 81, 69–74.
  • Wei, H.H., Shear-flow and thermocapillary interfacial instabilities in a two-layer viscous flow. Phys. Fluids 2006, 18, 064109.
  • Weinbaum, S. and O'Brien, V., Exact Navier–Stokes solutions including swirl and cross flow. Phys. Fluids 1967, 10, 1438–1447.
  • Yau, K.H., Klaassen, G.P. and Sonmor, L.J., Principal instabilities of large amplitude inertio-gravity waves. Phys. Fluids 2004, 16, 936–951.
  • Zurita-Gotor, P., Held, I.M. and Jansen, M.F., Kinetic energy-conserving hyperdiffusion can improve low resolution atmospheric models. J. Adv. Model. Earth Syst. 2015, 7, 1117–1135.