0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multiple jets in a rotating annulus model with an imposed azimuthal magnetic field

& ORCID Icon
Received 07 Mar 2024, Accepted 28 Jun 2024, Published online: 29 Jul 2024

References

  • Aurnou, J., Calkins, M., Cheng, J., Julien, K., King, E., Nieves, D., Soderlund, K.M. and Stellmach, S., Rotating convective turbulence in Earth and planetary cores. Phys. Earth Planet. Inter. 2015, 246, 52–71.
  • Boyd, J.P., Chebyshev and Fourier Spectral Methods, 2001 (Courier Corporation: New York).
  • Brummell, N.H. and Hart, J., High Rayleigh number β-convection. Geophys. Astrophys. Fluid Dyn. 1993, 68, 85–114.
  • Busse, F.H., Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 1970, 44, 441–460.
  • Busse, F.H., A simple model of convection in the Jovian atmosphere. Icarus 1976a, 29, 255–260.
  • Busse, F.H., Generation of planetary magnetism by convection. Phys. Earth Planet. Inter. 1976b, 12, 350–358.
  • Busse, F.H. and Finocchi, F., The onset of thermal convection in a rotating cylindrical annulus in the presence of a magnetic field. Phys. Earth Planet. Inter. 1993, 80, 13–23.
  • Busse, F.H. and Or, A., Convection in a rotating cylindrical annulus: thermal Rossby waves. J. Fluid Mech. 1986, 166, 173–187.
  • Cope, L. (2021). The dynamics of geophysical and astrophysical turbulence. Ph.D. Thesis.
  • Dormy, E., Oruba, L. and Petitdemange, L., Three branches of dynamo action. Fluid Dyn. Res. 2018, 50, 011415.
  • Duarte, L.D., Gastine, T. and Wicht, J., Anelastic dynamo models with variable electrical conductivity: an application to gas giants. Phys. Earth Planet. Inter. 2013, 222, 22–34.
  • Duer, K., Galanti, E. and Kaspi, Y., Depth dependent dynamics explain the equatorial jet difference between Jupiter and Saturn. Geophys. Res. Lett. 2024, 51, e2023GL107354.
  • Gastine, T. and Wicht, J., Stable stratification promotes multiple zonal jets in a turbulent Jovian dynamo model. Icarus 2021, 368, 114514.
  • Gastine, T., Wicht, J., Duarte, L., Heimpel, M. and Becker, A., Explaining Jupiter's magnetic field and equatorial jet dynamics. Geophys. Res. Lett. 2014, 41, 5410–5419.
  • Gillet, N., Brito, D., Jault, D. and Nataf, H., Experimental and numerical studies of convection in a rapidly rotating spherical shell. J. Fluid Mech. 2007, 580, 83–121.
  • Greenspan, H.P., The Theory of Rotating Fluids, Vol. 327, 1968 (Cambridge University Press Cambridge).
  • Heimpel, M. and Aurnou, J., Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high latitude jets on Jupiter and Saturn. Icarus 2007, 187, 540–557.
  • Heimpel, M., Aurnou, J. and Wicht, J., Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 2005, 438, 193–196.
  • Heimpel, M., Gastine, T. and Wicht, J., Simulation of deep-seated zonal jets and shallow vortices in gas giant atmospheres. Nat. Geosci. 2016, 9, 19–23.
  • Hori, K., Jones, C.A., Antuñano, A., Fletcher, L.N. and Tobias, S.M., Jupiter's cloud-level variability triggered by torsional oscillations in the interior. Nat. Astron. 2023, 7, 1–11.
  • Hori, K., Takehiro, S.i. and Shimizu, H., Waves and linear stability of magnetoconvection in a rotating cylindrical annulus. Phys. Earth Planet. Inter. 2014, 236, 16–35.
  • Hori, K., Teed, R. and Jones, C., The dynamics of magnetic Rossby waves in spherical dynamo simulations: a signature of strong-field dynamos? Phys. Earth Planet. Inter. 2018, 276, 68–85.
  • Hutcheson, K.A. and Fearn, D.R., The nonlinear evolution of magnetic instabilities in a rapidly rotating annulus. J. Fluid Mech. 1995, 291, 343–368.
  • Jones, C., Thermal and compositional convection in the outer core. Core Dyn. 2007, 8, 131–185.
  • Jones, C., A dynamo model of Jupiter's magnetic field. Icarus 2014, 241, 148–159.
  • Jones, C., Rotvig, J. and Abdulrahman, A., Multiple jets and zonal flow on Jupiter. Geophys. Res. Lett. 2003, 30, 1731.
  • Kaspi, Y., Galanti, E., Park, R., Duer, K., Gavriel, N., Durante, D., Iess, L., Parisi, M., Buccino, D., Guillot, T., Stevenson, D.J. and Bolton, S.J., Observational evidence for cylindrically oriented zonal flows on Jupiter. Nat. Astron. 2023, 7, 1463–1472.
  • Kurt, E., Busse, F.H. and Pesch, W., Hydromagnetic convection in a rotating annulus with an azimuthal magnetic field. Theor. Comput. Fluid Dyn. 2004, 18, 251–263.
  • Mason, S.J., Guervilly, C. and Sarson, G.R., Magnetoconvection in a rotating spherical shell in the presence of a uniform axial magnetic field. Geophys. Astrophys. Fluid Dynam. 2022, 116, 458–498.
  • Moore, K., Barik, A., Stanley, S., Stevenson, D., Nettelmann, N., Helled, R., Guillot, T., Militzer, B. and Bolton, S., Dynamo simulations of Jupiter's magnetic field: the role of stable stratification and a dilute core. Journal of Geophysical Research: Planets 2022, 127, e2022JE007479.
  • Or, A. and Busse, F.H., Convection in a rotating cylindrical annulus. Part 2. Transitions to asymmetric and vacillating flow. J. Fluid Mech. 1987, 174, 313–326.
  • Rhines, P.B., Waves and turbulence on a beta-plane. J. Fluid Mech. 1975, 69, 417–443.
  • Rotvig, J. and Jones, C.A., Multiple jets and bursting in the rapidly rotating convecting two-dimensional annulus model with nearly plane-parallel boundaries. J. Fluid Mech. 2006, 567, 117–140.
  • Schaeffer, N. and Cardin, P., Quasigeostrophic model of the instabilities of the Stewartson layer in flat and depth-varying containers. Phys. Fluids 2005, 17, 104111.
  • Schnaubelt, M. and Busse, F.H., Convection in a rotating cylindrical annulus part 3. Vacillating and spatially modulated flows. J. Fluid Mech. 1992, 245, 155–173.
  • Schneider, T. and Liu, J., Formation of jets and equatorial superrotation on Jupiter. J. Atmos. Sci. 2009, 66, 579–601.
  • Soward, A., Convection driven dynamos. Phys. Earth Planet. Inter. 1979, 20, 134–151.
  • Teed, R.J. and Dormy, E., Solenoidal force balances in numerical dynamos. J. Fluid Mech. 2023, 964, A26.
  • Teed, R.J., Jones, C.A. and Hollerbach, R., On the necessary conditions for bursts of convection within the rapidly rotating cylindrical annulus. Phys. Fluids 2012, 24, 066604.
  • Tobias, S.M., Diamond, P.H. and Hughes, D.W., β-plane magnetohydrodynamic turbulence in the solar tachocline. Astrophys. J. 2007, 667, L113.
  • Wulff, P., Christensen, U.R., Dietrich, W. and Wicht, J., The effects of a stably stratified region with radially varying electrical conductivity on the formation of zonal winds on gas planets. Journal of Geophysical Research: Planets 2024, 129, e2023JE008042.
  • Zhang, K. and Gubbins, D., Convection in a rotating spherical fluid shell with an inhomogeneous temperature boundary condition at finite Prandtl number. Phys. Fluids 1996, 8, 1141–1148.