160
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Form-classification for microbially induced sedimentary structures

Pages 243-257 | Received 28 Dec 2023, Accepted 17 Apr 2024, Published online: 09 May 2024

References

  • Arafiev, M.P. & Naugolnykh, S.V., 1998. Fossil roots from the upper Tatarian deposits of the Sukhona and Malaya Severnaya Dvina River Basin: Stratigraphy, taxonomy, and paleoecology. Paleontologicheski Zhurnal 1, 98–99.
  • Belnap, J., 2003. Comparative structure of physical and biological soil crusts. In Biological Soil Crusts: Structure, Function and Management. Belnap, J. & Lange, O.L., eds, Springer, Berlin, pp. 177–191.
  • Belnap, J., Kaltenecker, J.H., Rosentreter, R., Williams, J., Leonard, S. & Eldridge, D., 2001. Biological soil crusts: ecology and management. Bureau of Land Management Technical Reference 1730, 1–110.
  • Bengtson, S., Rasmussen, B. & Krapež, B., 2007. The Paleoproterozoic megascopic Stirling biota. Paleobiology 33, 351–381.
  • Berrendero, E., Perona, E. & Mateo, P., 2008. Genetic and morphological characterization of Rivularia and Calothrix (Nostocales, Cyanobacteria) from running water. International Journal of Systematic and Evolutionary Microbiology 58, 447–460.
  • Bertling, M., Buatois, L.A., Knaust, D., Laing, B., Mángano, M.G., Meyer, N., Mikuláš, R., Minter, N.J., Neumann, C., Rindsberg, A.K., Uchman, A. & Wisshak, M., 2022. Names for trace fossils 2.0: theory and practice in ichnotaxonomy. Lethaia 55, 1–19.
  • Bertrand-Sarfati, J. & Walter, M.R., 1981. Stromatolite biostratigraphy. Precambrian Research 15, 353–371.
  • Birck, F., 2013. L’École des Mines Nancy (ENSMN) 1919-2012: Entre Université, Grand Corps d’État et Industrie. Univ. Lorraine Press, Nancy, 419 pp.
  • Blaise, T., Izart, A., Michels, R., Suarez-Ruiz, I., Cathelineau, M. & Landrein, P., 2011. Vertical and lateral changes in organic matter from the Mesozoic, eastern Paris Basin (France): variability of sources and burial history. International Journal of Coal Geology 88, 163–178.
  • Bobrovskiy, I., Krasnova, A., Ivantsov, A., Luzhnaya, E. & Brocks, J.J., 2019. Simple sediment rheology explains the Ediacara biota preservation. Nature Ecology & Evolution 3, 582–589.
  • Bornet, E. & Flahault, C., 1886. Revision des Nostocacees heterocytees. Annales des Sciences Naturelles Botanique 7, 323–381.
  • Bornet, E. & Flahault, C., 1988. Revision des Nostocacees heterocytees. Annales des Sciences Naturelles Botanique 7, 71–262.
  • Bottjer, D. & Hagadorn, J.W., 2007. Mat Growth Features in Atlas of Microbial Mat Features Preserved within the Clastic Rock Record. Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W. & Catuneau, O., eds, Elsevier, Amsterdam, pp. 1–53.
  • Bourquin, J.C., 2016. 88-Vosges. Glossaire du Haut-Fourneau Association de Le Savoir Fer 5 88, 1–8.
  • Bourquin, S. & Guillocheau, F., 1996. Keuper stratigraphic cycles in the Paris Basin and comparison with cycles in other Peritethyan basins (German Basin and Bresse-Jura Basin). Sedimentary Geology 105, 159–182.
  • Brongniart, A., 1828. Prodrome d’une histoire des végétaux fossiles. Levrault éd., Strasbourg, 223 pp.
  • Bromley, R.G., Pemberton, S.G. & Rahmani, R.A., 1984. A Cretaceous woodground: the Teredolites ichnofacies. Journal of Paleontology 58, 488–498.
  • Callow, R.H., Battison, L. & Brasier, M.D., 2011. Diverse microbially induced sedimentary structures from 1Ga lakes of the Diabaig Formation, Torridon Group, Northwest Scotland. Sedimentary Geology 239, 117–128.
  • Chu, D., Tong, J., Bottjer, D.J., Song, H., Song, H., Benton, M.J., Tian, L. & Guo, W., 2017. Microbial mats in the terrestrial Lower Triassic of North China and implications for the Permian–Triassic mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 474, 214–231.
  • Compton, T.E., 1917. The Battles of August, 1914, in Lorraine and the Ardennes. Royal United Services Institution Journal 62, 517–534.
  • Davies, N.S., Liu, A.G., Gibling, M.R. & Miller, R.F., 2016. Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes. Earth-Science Reviews 154, 210–246.
  • Decaisne, J., 1842. Essai sur une classication des algues et des polypieres calciferes de Lamouroux. Annales des Sciences Naturelles Botanique 17, 297–380.
  • Droser, M.L., Evans, S.D., Tarhan, L.G., Surprenant, R.L., Hughes, I.V., Hughes, E.B. & Gehling, J.G., 2022. What happens between depositional events, stays between depositional events: the significance of organic mat surfaces in the capture of Ediacara communities and the sedimentary rocks that preserve them. Frontiers in Earth Science 10, 826353.
  • Evans, S.D., Gehling, J.G. & Droser, M.L., 2019. Slime travelers: early evidence of animal mobility and feeding in an organic mat world. Geobiology 17, 490–509.
  • Evans, S.D., Gehling, J.G., Erwin, D.H. & Droser, M.L., 2022. Ediacara growing pains: modular addition and development in Dickinsonia costata. Paleobiology 97, 83–98.
  • Fedonkin, M.A., Gehling, J.G., Grey, K., Narbonne, G.M. & Vickers-Rich, P., 2008. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. Johns Hopkins Press, Baltimore, 244 pp.
  • Feistmantel, O., 1881. The fossil flora of the Gondwana System. Part 2. The flora of the Damuda and Panchet Divisions. Memoir of the Geological Survey of India Paleontologica Indica 12, 78–149.
  • Fliche, P., 1906. Flore fossile du Trias en Lorraine et Franche-Compté. Bulletin Societé des Sciences Nancy 3, 67–166.
  • Ford, T., 1958. Pre-cambrian fossils from the Charnwood Forest. Proceedings of the Yorkshire Geological Society 31, 211–217.
  • Frey, R.W., Pemberton, S.G. & Fagerstrom, J.A., 1984. Morphological, ethological, and environmental significance of the ichnogenera Scoyenia and Ancorichnus. Journal of Paleontology 58, 511–528.
  • Gehling, J.G., 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios 14, 40–57.
  • Gehling, J.G., 2000. Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia. Precambrian Research 100, 65–95.
  • Gehling, J.G. & Droser, M.L., 2009. Textured organic surfaces associated with the Ediacara biota in South Australia. Earth-Science Reviews 96, 196–206.
  • Gehling, J.G., Narbonne, G.M. & Anderson, M.M., 2000. The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology 43, 427–456.
  • Glaessner, M.F. & Walter, M.R., 1975. New Precambrian fossils from the Arumbera Sandstone, Northern Territory, Australia. Alcheringa 1, 59–69.
  • Golubic, S. & Campbell, S.E., 1981. Biogenically formed aragonite concretions in marine Rivularia. In Phanerozoic Stromatolites: Case Histories. Monty, C., ed., Springer, Berlin, 209–229.
  • Gomont, M., 1892. Monographie des Oscillariees (Nostocacees homocystees). Annales des Sciences Naturelles Botanique 16, 91–264.
  • Grazhdankin, D. & Gerdes, G., 2007. Ediacaran microbial colonies. Lethaia 40, 201–210.
  • Haga, T. & Kase, T., 2011. Opertochasma somaensis n. sp. (Bivalvia: Pholadidae) from the Upper Jurassic in Japan: a perspective on pholadoidean early evolution. Journal of Paleontology 85, 478–488.
  • Häntzschel, W., 1975. Trace fossils and problematica. In Treatise on Invertebrate Paleontology, Part W. 2nd ed., Moore, R.C., ed., Geological Society of America & University of Kansas, Boulder & Lawrence, 269 pp.
  • Hedwig, J., 1801. 352. Species Muscorum Frondosum. J.A. Barthii, Leipzig.
  • Hindák, F., 2007. Conspicuous forms of heterocytes and hormogonia in Rivularia mesenterica (Cyanophyta/Cyanobacteria). Phytologia 13, 21–27.
  • Hitchcock, E., 1845. An attempt to name, classify, and describe the animals that made the fossil footmarks of New England. Proceedings of the Meeting of the American Association of Geologists and Naturalists, New Haven, Connecticut 6, 23–25.
  • Ivantsov, A.Y., 1999. The new dickinsonid from the Upper Vendian of the White Sea Winter Coast. Paleontologicheskii Zhurnal 33, 3–11.
  • Jenkins, R.J. & Gehling, J.G., 1978. A revision of the frond-like fossils of the Ediacara assemblage. Records of the South Australian Museum 17, 347–359.
  • Knoll, A.H., 1982. Microfossils from the late Precambrian Draken Conglomerate, Ny Friesland, Svalbard. Journal of Paleontology 56, 755–790.
  • Krempelhuber, A., 1876. Lichenes mexicani quos legit 1875 R. Rabenhorst. Hedwigia 15, 148–149.
  • Kumar, S. & Ahmad, S., 2014. Microbially induced sedimentary structures (MISS) from the Ediacaran Jodhpur Sandstone, Marwar Supergroup, western Rajasthan. Journal of Asian Earth Sciences 91, 352–361.
  • Kumar, S. & Pandey, S.K., 2008. Arumberia and associated fossils from the Neoproterozoic Maihar Sandstone, Vindhyan Supergroup, Central India. Paleontological Society of India Journal 53, 83–97.
  • Kumar, S. & Pandey, S.K., 2009. Note on the occurrence of Arumberia banksi and associated fossils from the Jodhpur Sandstone, Marwar Supergroup, Western Rajasthan. Palaeontological Society of India Journal 54, 171–178.
  • Kustatscher, E., Wachtler, M. & van Konijnenburg-van Cittert, J.H., 2004. A number of additional and revised taxa from the Ladinian flora of the Dolomites, Northern Italy. GeoAlp 1, 57–69.
  • Lathuliere, B., 2022. Online catalogue of the paleontology collections of the University at Nancy (CPUN). https://explore.recolnat.org/search/paleontologie/simplequery=Rivularites (accessed 28.07.2023).
  • Lebesconte, P., 1887. Constitution générale du Massif Breton compare à celle du Finisterre. Bulletin de la Société Géologique de France 14, 776–820.
  • Lebesconte, P., 1891. Les poudingues rouges de Montfort. Revue des Sciences Naturelles de l’Ouest 3, 1–8.
  • Lee, D.C., Byun, U.H., Kwon, Y.K., Keehm, Y., Jeong, G.Y. & Yi, K., 2020. Manchuriophycus-like elliptical cracks in thin mudstones intercalated with lacustrine sandstone: Intrastratal crack formation in water-saturated sediments. Sedimentary Geology 408, 105769.
  • Leymerie, M.A., 1842. Suite du mémoire sur le terrain Crétacé du Départment de l‘Aube. Société Géologique France, Mémoires 5, 1–34.
  • Lucas, S.G., Minter, N.J. & Hunt, A.P., 2010. Re-evaluation of alleged bees’ nests from the Upper Triassic of Arizona. Palaeogeography, Palaeoclimatology, Palaeoecology 286, 194–201.
  • Malartre, F., Palain, C., Michels, R. & Courtinat, B., 2002. Stratigraphie intégrée d’un complexe fluviatile: la formation du «grès à roseaux» (Trias supérieur, NE France). Signature locale d’un événement global? Travaux et Documents des Laboratoires de Géologie de Lyon 156, 150–151.
  • McCandless, H. & Droser, M.L., 2023. Using taphonomy to understand the significance of macroscopic algae in communities of the Ediacara Member, South Australia. Geological Society of America Abstracts with Programs 55, 365563.
  • McMahon, W.J., Liu, A.G., Tindal, B.H. & Kleinhans, M.G., 2020. Ediacaran life close to land: Coastal and shoreface habitats of the Ediacaran macrobiota, the Central Flinders Ranges, South Australia. Journal of Sedimentary Research 90, 1463–1499.
  • McMahon, S., Matthews, J.J., Brasier, A. & Still, J., 2021. Late Ediacaran life on land: desiccated microbial mats and large biofilm streamers. Proceedings. Biological Sciences 288, 20211875.
  • McMahon, W.J., Davies, N.S., Liu, A.G. & Went, D.J., 2022. Enigma variations: characteristics and likely origin of the problematic surface texture Arumberia, as recognized from an exceptional bedding plane exposure and the global record. Geological Magazine 159, 1–20. −20.
  • McNeill, J., Barrie, F.R., Buck, W.R., Demoulin, V., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Marhold, K., Prado, J., Prud’homme van Reine, W.F., Smith, G.F., Wiersema, J.H. & Turland, N.J., 2012. International Code of Nomenclature for algae, fungi, and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress, Melbourne, Australia, July 2011. Koeltz Scientific Books Koeltz Scientific Books. https://web.archive.org/web/20131104060236/http://www.iapt-taxon.org/nomen/main.php?page=title
  • Noffke, N., 2010. Geobiology: Microbial Mats in Sandy Deposits from the Archean Era to Today. Springer, Berlin, 194 pp.
  • Noffke, N., 2015. Ancient sedimentary structures in the < 3.7 Ga Gillespie Lake Member, Mars, that resemble macroscopic morphology, spatial associations, and temporal succession in terrestrial microbialites. Astrobiology 15, 169–192.
  • Noffke, N., 2021. Microbially induced sedimentary structures in clastic deposits: implication for the prospection for fossil life on Mars. Astrobiology 21, 866–892.
  • Noffke, N., Christian, D., Wacey, D. & Hazen, R.M., 2013. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology 13, 1103–1124.
  • Noffke, N., Beraldi-Campesi, H., Callefo, F., Carmona, N., Cuadrado, D.G., Hickman-Lewis, K., Homann, M., Mitchell, R., Sheldon, N., Westall, F. & Xiao, S., 2022. Microbially Induced Sedimentary Structures (MISS). Treatise of Invertebrate Paleontology Online. Part B 2, 1–29.
  • Nuttall, T., 1841. Descriptions of new species and genera of plants in the natural order of the Compositae collected in a tour across the continent to the Pacific Ocean, a residence in Oregon, and a visit to the Sandwich Islands and northern California during the years 1834 and 1835. Transactions of the American Philosophical Society 73, 284–353.
  • Pratt, B.R., 2021. Kinneyia-type wrinkle structures on sandstone beds: not microbially induced but deformation features caused by synsedimentary earthquakes. PALAIOS 36, 313–325.
  • Pursh, F.T., 1814. Flora Americae Septentrionalis, or a Systematic Arrangement and Description of Plants of North America. White Cochrane and Co, London, 362 p.
  • Retallack, G.J., 1997. Earliest Triassic origin of Isoetes and quillwort evolutionary radiation. Journal of Paleontology 71, 500–521.
  • Retallack, G.J., 2009. Cambrian–Ordovician non-marine fossils from South Australia. Alcheringa 33, 355–391.
  • Retallack, G.J., 2012. Criteria for distinguishing microbial mats and earths. In Microbial Mats in Siliciclastic Sediments. Noffke, N. & Chafetz, H., eds, Society of Economic Paleontologists and Mineralogists Special Paper 101. Tulsa, 136–152.
  • Retallack, G.J., 2013. Ediacaran life on land. Nature 493, 89–92.
  • Retallack, G.J., 2014. Volcanosedimentary paleoenvironments of Ediacaran fossils in Newfoundland. Geological Society of America Bulletin 126, 619–638.
  • Retallack, G.J., 2016. Ediacaran fossils in thin-section. Alcheringa 40, 583–600.
  • Retallack, G.J., 2017. Exceptional preservation of soft-bodied Ediacara Biota promoted by silica-rich oceans: comment. Geology 45, e407–e407.
  • Retallack, G.J., 2019. Interflag sandstone laminae, a novel sedimentary structure, with implications for Ediacaran paleoenvironments. Sedimentary Geology 379, 60–76.
  • Retallack, G.J., 2020. Boron paleosalinity proxy for deeply buried Paleozoic and Ediacaran fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 540, 109536.
  • Retallack, G.J., 2021. Ediacaran periglacial sedimentary structures. Journal of Palaeosciences 70, 5–30.
  • Retallack, G.J., 2022a. Ferruginous biofilm preservation of Ediacaran fossils. Gondwana Research 110, 73–89.
  • Retallack, G.J., 2022b. Damaged Dickinsonia specimens provide clues to Ediacaran vendobiont biology. PLoS One 17, e0269638.
  • Retallack, G.J., 2022c. Reconsideration of the Ediacaran problematicum Aulozoon. Journal of Palaeosciences 71, 143–157.
  • Retallack, G.J., 2024. Comment on “Biostratinomy of the enigmatic tubular organism Aulozoon soliorum, the Rawnsley Quartzite, South Australia” by Surprenant et al. (2023). Gondwana Research 131, 18–19.
  • Retallack, G.J. & Broz, A.P., 2021. Arumberia and other Ediacaran–Cambrian fossils of central Australia. Historical Biology 33, 1964–1988.
  • Retallack, G.J. & Dilcher, D.L., 1988. Reconstructions of selected seed ferns. Annals of the Missouri Botanical Garden 75, 1010–1057.
  • Retallack, G.J. & Mao, X., 2019. Paleoproterozoic (ca. 1.9 Ga) megascopic life on land in Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 532, 109266.
  • Retallack, G.J., Chen, Z.Q., Huang, Y. & Fang, Y., 2021. Oxidizing atmosphere and life on land during the late Paleoproterozoic outset of the “boring billion”. Precambrian Research 364, 106361.
  • Ride, W.D.L., Cogger, H.G., Dupuis, C., Kraus, O., Dupuis, A., Thmopson, F.C. & Tubbs, P.K., 1999. International Code of Zoological Nomenclature. 4th ed. Natural History Museum, London, 364 pp.
  • Riding, R., 1991. Calcified cyanobacteria. In Calcareous Algae and Stromatolites. Riding, R., ed., Springer, Berlin, 55–87.
  • Rosentreter, R., 1984. Compositional patterns within a rabbitbrush (Chrysothamnus) community of the Idaho Snake River Plain. Intermountain Research Station General Technical Report INT-200 200, 273–277.
  • Rosentreter, R., 1998. On the Aspicilia reptans complex, with description of two new species. In Lichenographia Thomsoniana: North American Lichenology in Honor of John W. Tghomson. Glenn, M.G., Harris. R.C., Pirie, R. & Cole, M.S., eds., Mycotaxon, Ithaca, NY, 69, 162–170.
  • Runnegar, B., 2022. Following the logic behind biological interpretations of the Ediacaran biotas. Geological Magazine 159, 1093–1117.
  • Runnegar, B.N. & Fedonkin, M.A., 1991. Proterozoic metazoan body plans. In The Proterozoic Biosphere: A Multidisciplinary Study. Schopf, J.W. & Klein, C., eds, Cambridge University Press, Cambridge, 369–388.
  • Schopf, J.W., Kudryavtsev, A.B., Czaja, A.D. & Tripathi, A.B., 2007. Evidence of Archean life: stromatolites and microfossils. Precambrian Research 158, 141–155.
  • Schreber, J.C.D., 1771. 1196. Spicilegium Flora Lipsicae. Stafleu, Leipzig.
  • Seilacher, A., 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society 149, 607–613.
  • Seilacher, A., 2007. Trace Fossil Analysis. Springer, Berlin, 226 pp.
  • Shalygin, S., Pietrasiak, N., Gomez, F., Mlewski, C., Gerard, E. & Johansen, J.R., 2018. Rivularia halophila sp. nov. (Nostocales, Cyanobacteria): the first species of Rivularia described with the modern polyphasic approach. European Journal of Phycology 53, 537–548.
  • Shapiro, J.A., 1995. The significances of bacterial colony patterns. BioEssays: news and Reviews in Molecular, Cellular and Developmental Biology 17, 597–607.
  • Simpson, W.S., Simpson, E.L., Wizevich, M.C., Malenda, H.F., Hilbert-Wolf, H.L. & Tindall, S.E., 2010. A preserved Late Cretaceous biological soil crust in the Capping Sandstone Member, Wahweap Formation, Grand Staircase-Escalante National Monument, Utah: paleoclimatic implications. Sedimentary Geology 230, 139–145.
  • Smith, J.E. & Sowerby, J., 1800. English Botany 10, 649–720.
  • Sprigg, R.C., 1947. Early Cambrian 'jellyfishes’ of Ediacara South Australia, and Mount John, Kimberly District, Western Australia. Transactions of the Royal Society of South Australia 73, 72–99.
  • Squinabol, S., 1888. Contribuzioni alla flora fossile dei terreni terziarii della Liguria. Bolletin Societa Geologica Italiana 6, 545–559.
  • Stimson, M.R., Miller, R.F., MacRae, R.A. & Hinds, S.J., 2017. An ichnotaxonomic approach to wrinkled microbially induced sedimentary structures. Ichnos 24, 291–316.
  • Surprenant, R.L., Gehling, J.G., Hughes, E.B. & Droser, M.L., 2023. Biostratinomy of the enigmatic tubular organism Aulozoon soliorum, the Rawnsley Quartzite, South Australia. Gondwana Research 122, 138–162.
  • Surprenant, R.L., Gehling, J.G., Hughes, E.B. & Droser, M.L., 2024. Reply to “Comment on “Biostratinomy of the enigmatic tubular organism Aulozoon soliorum, the Rawnsley Quartzite, South Australia” by Surprenant et al. (2023). Gondwana Research 131, 69–74.
  • Tarhan, L.G., Droser, M.L. & Gehling, J.G., 2010. Taphonomic controls on Ediacaran diversity: uncovering the holdfast origin of morphologically variable enigmatic structures. Palaios 25, 823–830.
  • Tarhan, L.G., Hood, A.V., Droser, M.L., Gehling, J.G. & Briggs, D.E., 2016. Exceptional preservation of soft-bodied Ediacara Biota promoted by silica-rich oceans. Geology 44, 951–954.
  • Tuckerman, E., 1862. Observations on North American and other lichens. Proceedings of the American Academy of Arts and Sciences 5, 383–422.
  • Turland, N., 2019. The Code Decoded. A User’s Guide to the International Code of Nomenclature for Algae, Fungi, and Plants. Advanced Books, Sofia, e38075.
  • Turland, N.J., Wiersema, J.H., Barrie, F.R., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Kusber, W.H., Li, D.Z., Marhold, K. & May, T.W., 2018. International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159, 254. pp.
  • Wachtler, M., 2016. The conifer Voltzia in the Alps. In Fossil Triassic Plants from Europe and Their Evolution, Volume 1: Conifers and Cycads. Wachtler, M. & Perner, T., eds, Dolomythos Museum, Innichen, South Tyrol, Italy, 67–99.
  • Wade, M., 1968. Preservation of soft‐bodied animals in Precambrian sandstones at Ediacara, South Australia. Lethaia 1, 238–267.
  • Walter, M.R., Krylov, I.N. & Preiss, W.V., 1979. Stromatolites from Adelaidean (late Proterozoic) sequences in central and South Australia. Alcheringa 3, 287–305.
  • Weber, W.A., 1981. Lichenes exsiccati distributed by the Universit of Colorado Museum Boulder. Mycotaxon 13, 85–104.
  • Weinberger, R., 2001. Evolution of polygonal patterns in stratified mud during desiccation: the role of flaw distribution and layer boundaries. Geological Society of America Bulletin 113, 20–31.
  • White, D., 1929. Flora of the Hermit Shale, Grand Canyon, Arizona. Carnegie Institute of Washington Publication 405, 1–222.
  • Xiao, S., Droser, M., Gehling, J.G., Hughes, I.V., Wan, B., Chen, Z. & Yuan, X., 2013. Affirming life aquatic for the Ediacara biota in China and Australia. Geology 41, 1095–1098.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.