179
Views
0
CrossRef citations to date
0
Altmetric
Note

A unique example of the Late Cretaceous horseshoe crab Tachypleus syriacus preserves transitional bromalites

Received 27 Feb 2024, Accepted 24 Apr 2024, Published online: 20 May 2024

References

  • Agassiz, L., 1833. Neue Entdeckungen über fossile Fische. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1833, 675–677.
  • Bicknell, R.D.C., Błażejowski, B., Wings, O., Hitij, T. & Botton, M.L., 2021a. Critical re-evaluation of Limulidae reveals limited Limulus diversity. Papers in Palaeontology 7, 1525–1556.
  • Bicknell, R.D.C., Birch, S.A., Charbonnier, S., Sautereau, F., Hitij, T. & Campione, N.E., 2019a. On the appendicular anatomy of the xiphosurid Tachypleus syriacus and the evolution of fossil horseshoe crab appendages. Die Naturwissenschaften 106, 38.
  • Bicknell, R.D.C., Bruthansová, J. & Kimmig, J., 2024. Shelly coprolites record durophagous predation in the Late Ordovician Bohdalec Formation (Katian; Prague Basin, Czech Republic). Geobios 82, 1–11.
  • Bicknell, R.D.C., Holmes, J.D., Edgecombe, G.D., Losso, S.R., Ortega-Hernández, J., Wroe, S. & Paterson, J.R., 2021b. Biomechanical analyses of Cambrian euarthropod limbs reveal their effectiveness in mastication and durophagy. Proceedings. Biological Sciences 288, 20202075.
  • Bicknell, R.D.C., Holmes, J.D., Pates, S., García-Bellido, D.C. & Paterson, J.R., 2022a. Cambrian carnage: trilobite predator-prey interactions in the Emu Bay Shale of South Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 591, 110877.
  • Bicknell, R.D.C., Ledogar, J.A., Wroe, S., Gutzler, B.C., Watson, W.H., III,. & Paterson, J.R., 2018a. Computational biomechanical analyses demonstrate similar shell-crushing abilities in modern and ancient arthropods. Proceedings of the Royal Society B 285, 20181935.
  • Bicknell, R.D.C., Paterson, J.R., Caron, J.-B. & Skovsted, C.B., 2018b. The gnathobasic spine microstructure of recent and Silurian chelicerates and the Cambrian artiopodan Sidneyia: functional and evolutionary implications. Arthropod Structure & Development 47, 12–24.
  • Bicknell, R.D.C., Lustri, L. & Brougham, T., 2019b. Revision of ‘Bellinurus’ carteri (Chelicerata: Xiphosura) from the Late Devonian of Pennsylvania, USA. Comptes Rendus Palevol 18, 967–976.
  • Bicknell, R.D.C., Naugolnykh, S.V. & McKenzie, S.C., 2022b. On Paleolimulus from the Mazon Creek Konservat-Lagerstätte. Comptes Rendus Palevol 21, 303–322.
  • Bicknell, R.D.C. & Pates, S., 2020. Pictorial atlas of fossil and extant horseshoe crabs, with focus on Xiphosurida. Frontiers in Earth Science 8, 98.
  • Bicknell, R.D.C., Smith, P.M. & Kimmig, J., 2023. Novel coprolitic records from the Silurian (Přídolí) Wallace Shale of New South Wales. Alcheringa 47, 24–30.
  • Botton, M.L., 1984. Diet and food preferences of the adult horseshoe crab Limulus polyphemus in Delaware Bay, New Jersey, USA. Marine Biology 81, 199–207.
  • Botton, M.L. & Haskin, H.H., 1984. Distribution and feeding of the horseshoe-crab, Limulus polyphemus, on the continental-shelf off New-Jersey. Fishery Bulletin 82, 383–389.
  • Botton, M.L. & Ropes, J.W., 1989. Feeding ecology of horseshoe crabs on the continental shelf, New Jersey to North Carolina. Bulletin of Marine Science 45, 637–647.
  • Botton, M.L., Shuster, C.N., Jr.,. & Keinath, J.A., 2003. Horseshoe crabs in a food web: Who eats whom. In The American Horseshoe Crab. Shuster Jr., C.N., Barlow, R.B. & Brockmann, H.J., eds. Cambridge: Harvard University Press, pp. 133–153.
  • Buckland, W., 1829. XII. – On the Discovery of Coprolites, or Fossil Fæces, in the Lias at Lyme Regis, and in other Formations. Transactions of the Geological Society of London 3, 223–236.
  • Carmichael, R.H., Rutecki, D., Annett, B., Gaines, E. & Valiela, I., 2004. Position of horseshoe crabs in estuarine food webs: N and C stable isotopic study of foraging ranges and diet composition. Journal of Experimental Marine Biology and Ecology 299, 231–253.
  • Chatterji, A., Mishra, J.K. & Parulekar, A.H., 1992. Feeding behaviour and food selection in the horseshoe crab, Tachypleus gigas (Müller). Hydrobiologia 246, 41–48.
  • Debnath, R., Nag, S.K., Choudhury, A., Dasgupta, R. & Sur, R., 1989. Feeding habit and digestive physiology of the Indian horseshoe crab, Tachypleus gigas (Müller). Indian Journal of Physiology and Allied Sciences 43, 44–49.
  • Eller, E.R., 1940. Belinurus carteri: a new xiphosuran from the Upper Devonian of Pennsylvania. Annals of the Carnegie Museum 28, 133–136.
  • Fornshell, J.A., 2022. The potential functions of mechanoreceptors found on trilobite larva of Limulus polyphemus (Linnaeus, 1758). Arthropods 11, 127–134.
  • Häntzschel, W., El-Baz, F. & Amstutz, G.C., 1968. Coprolites an Annotated Bibliography, Geological Society of America, Boulder, CO.
  • Hemleben, Cv., 1977. Rote Tiden und die oberkretazischen Plattenkalke im Libanon. Neues Jahrbuch für Geologie und Paläontologie. Monatshefte 1, 239–255.
  • Hinkelman, J. & Vršanská, L., 2020. A Myanmar amber cockroach with protruding feces contains pollen and a rich microcenosis. The Science of Nature107, 13.
  • Hunt, A.P. & Lucas, S.G., 2021. The Ichnology of Vertebrate Consumption: Dentalites, Gastroliths and Bromalites. Bulletin of the New Mexico Museum of Natural History and Science 87, 1–216.
  • Hunt, A.P., Milàn, J., Lucas, S.G. & Spielmann, J.A., 2012. Vertebrate coprolite studies: status and prospectus. New Mexico Museum of Natural History and Science Bulletin 57, 5–24.
  • Kellner, A.W.A., Caldwell, M.W., Holgado, B., Vecchia, F.M.D., Nohra, R., Sayão, J.M. & Currie, P.J., 2019. First complete pterosaur from the Afro-Arabian continent: insight into pterodactyloid diversity. Scientific Reports 9, 17875.
  • Kimmig, J. & Pratt, B.R., 2018. Coprolites in the Ravens Throat River Lagerstätte of Northwestern Canada: implications for the middle Cambrian food web. PALAIOS 33, 125–140.
  • Kimmig, J. & Strotz, L.C., 2017. Coprolites in mid-Cambrian (Series 2-3) Burgess Shale-type deposits of Nevada and Utah and their ecological implications. Bulletin of Geosciences 92, 297–309.
  • Klug, C., Pohle, A., Roth, R., Hoffmann, R., Wani, R. & Tajika, A., 2021. Preservation of nautilid soft parts inside and outside the conch interpreted as central nervous system, eyes, and renal concrements from the Lebanese Cenomanian. Swiss Journal of Palaeontology 140, 15.
  • Knaust, D., 2020. Invertebrate coprolites and cololites revised. Papers in Palaeontology 6, 385–423.
  • Koob, S.P., 1986. The use of Paraloid B-72 as an adhesive: its application for archaeological ceramics and other materials. Studies in Conservation 31, 7–14.
  • Kraft, P., Vaškaninová, V., Mergl, M., Budil, P., Fatka, O. & Ahlberg, P.E., 2023. Uniquely preserved gut contents illuminate trilobite palaeophysiology. Nature 622, 545–551.
  • Lamsdell, J.C., 2020. The phylogeny and systematics of Xiphosura. Peerj. 8, e10431.
  • Lamsdell, J.C. & McKenzie, S.C., 2015. Tachypleus syriacus (Woodward) – a sexually dimorphic Cretaceous crown limulid reveals underestimated horseshoe crab divergence times. Organisms Diversity & Evolution 15, 681–693.
  • Marramà, G., Villier, B., Dalla Vecchia, F.M. & Carnevale, G., 2016. A new species of Gladiopycnodus (Coccodontoidea, Pycnodontomorpha) from the Cretaceous of Lebanon provides new insights about the morphological diversification of pycnodont fishes through time. Cretaceous Research 61, 34–43.
  • Miyashita, T., Coates, M.I., Farrar, R., Larson, P., Manning, P.L., Wogelius, R.A., Edwards, N.P., Anné, J., Bergmann, U., Palmer, A.R. & Currie, P.J., 2019. Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological–molecular conflict in early vertebrate phylogeny. Proceedings of the National Academy of Sciences of the United States of America 116, 2146–2151.
  • Nader, F.H., Abdel-Rahman, A.-F.M. & Haidar, A.T., 2006. Petrographic and chemical traits of Cenomanian platform carbonates (central Lebanon): implications for depositional environments. Cretaceous Research 27, 689–706.
  • Parry, L.A., Wilson, P., Sykes, D., Edgecombe, G.D. & Vinther, J., 2015. A new fireworm (Amphinomidae) from the Cretaceous of Lebanon identified from three-dimensionally preserved myoanatomy. BMC Evolutionary Biology 15, 256.
  • Philip, J., Babinot, J.F., Tronchetti, G., Fourcade, E., Ricou, L.E., Guiaud, R., Bellion, Y., Herbin, J.P., Combes, P.E., Conee, J.J. & Dercourt, J., 1993. Late Cenomanian palaeoenvironments (94 to 92 Ma). In Atlas Tethys Palaeoenvironmental Maps. Dercourt, J., Ricou, L.E. & Vrielynck, B., eds. Paris: Gauthier-Villars, p. 153–178.
  • Přikryl, T., Košták, M., Mazuch, M. & Mikuláš, R., 2012. Evidence for fish predation on a coleoid cephalopod from the Lower Jurassic Posidonia Shale of Germany. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 263, 25–33.
  • Razak, M.R.M., Kassim, Z., Sabuti, A.A. & Ismail, A., 2017. Feeding ecology and food preferences of Cherok Paloh, Pahang horseshoe crab, Tachypleus gigas. Malaysian Journal of Fundamental and Applied Sciences 13, 198–202.
  • Swinburne, N.H.M. & Hemleben, C., 1994. The plattenkalk facies: a deposit of several environments. Geobios 27, 313–320.
  • van Hinsbergen, D.J.J., De Groot, L.V., van Schaik, S.J., Spakman, W., Bijl, P.K., Sluijs, A., Langereis, C.G. & Brinkhuis, H., 2015. A paleolatitude calculator for paleoclimate studies. PLoS ONE 10, e0126946.
  • Wippich, M.G.E. & Lehmann, J., 2004. Allocrioceras from the Cenomanian (mid‐Cretaceous) of the Lebanon and its bearing on the palaeobiological interpretation of heteromorphic ammonites. Palaeontology 47, 1093–1107.
  • Woodward, H., 1879. Contributions to the knowledge of fossil Crustacea. Quarterly Journal of the Geological Society 35, 549–556.