477
Views
0
CrossRef citations to date
0
Altmetric
Articles

Optimizing the number of deployed yard cranes in a container terminal

ORCID Icon, &
Pages 86-103 | Received 09 Feb 2022, Accepted 21 Jul 2022, Published online: 08 Aug 2022

References

  • Akyüz MH, Lee CY. 2014. A mathematical formulation and efficient heuristics for the dynamic container relocation problem. Naval Res Logistic. 61(2):101–118.
  • Azab A, Morita H. 2022. The block relocation problem with appointment scheduling. Eur J Oper Res. 297(2):680–694.
  • Bierwirth C, Meisel F. 2010. A survey of berth allocation and quay crane scheduling problems in container terminals. Eur J Oper Res. 202(3)2010, :615–627.
  • Boge S, Goerigk M, Knust S. 2020. Robust optimization for premarshalling with uncertain priority classes. Eur J Oper Res. 287(1):191–210.
  • Bortfeldt A, Forster F. 2012. A tree search procedure for the container pre-marshalling problem. Eur J Oper Res. 217(3):531–540.
  • Boysen N, Briskorn D, Meisel F. 2017. A generalized classification scheme for crane scheduling with interference. Eur J Oper Res. 258(1):343–357.
  • Boysen N, Emde S. 2016. The parallel stack loading problem to minimize blockages. Eur J Oper Res. 249(2):618–627.
  • Boysen N, Stephan K. 2016. A survey on single crane scheduling in automated storage/retrieval systems. Eur J Oper Res. 254(3):691–704.
  • Briskorn D, Emde E, Boysen N. 2016. Cooperative twin-crane scheduling. Discrete Appl Math. 211:40–57.
  • Briskorn D, Zey L. 2020. Interference aware scheduling of triple-crossover-cranes. J Sched. 23(4):465–485.
  • Bruns F, Knust S, Shakhlevich NV. 2016. Complexity results for storage loading problems with stacking constraints. Eur J Oper Res. 249(3):1074–1081.
  • Casey B, Kozan E. 2012. Optimising container storage processes at multimodal terminals. J Oper Res Soc. 63(8):1126–1142.
  • Chen L, Langevin A. 2011. Multiple yard cranes scheduling for loading operations in a container terminal. Eng Optim. 43(11):1205–1221.
  • Cheung RK, Li CL, Lin W. 2002. Interblock crane deployment in container terminals. Transport Sci. 36(1):79–93.
  • Covic F. 2018. October. A literature review on container handling in yard blocks. In International conference on computational logistics. Cham: Springer, p. 139–167.
  • Ding Y, Yang Y, Heilig L, Lalla-Ruiz E, Voss S. 2021. Deployment and retrofit strategy for rubber-tyred gantry cranes considering carbon emissions. Comput Indus Eng. 161:107645.
  • Dragović B, Tzannatos E, Park NK. 2017. Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool. Flex Serv Manuf J. 29:4–34. doi:10.1007/s10696-016-9239-5
  • ElWakil M, Eltawil A, Gheith M. 2022. On the integration of the parallel stack loading problem with the block relocation problem. Comput Oper Res. 138:105609.
  • Expósito-Izquierdo C, Melián-Batista B, Moreno-Vega M. 2012. Pre-marshalling problem: heuristic solutionmethod and instances generator. Expert Syst Appl. 39(9):8337–8349.
  • Feng Y, Song DP, Li D. 2022. Smart stacking for import containers using customer information at automated container terminals. Eur J Oper Res. 301(2):502–522.
  • Gharehgozli A, Gharehgozli O, Li K. 2021a. Mixed Integer programming models on scheduling automated stacking cranes. Int J Business Anal IJBAN. 8(4):11–33.
  • Gharehgozli AH, Laporte G, Yu Y, de Koster R. 2015. Scheduling twin yard cranes in a container block. Transport Sci. 49(3):686–705.
  • Gharehgozli AH, Mileski J, Duru O. 2017b. Heuristic estimation of container stacking and reshuffling operations under the containership delay factor and mega-ship challenge. Marit Policy Manage. 44(3):373–391.
  • Gharehgozli AH, Roy D, de Koster R. 2016. Sea container terminals: new technologies and OR models. Marit Econ Logist. 18(2):103–140.
  • Gharehgozli AH, Vernooij FG, Zaerpour N. 2017a. A simulation study of the performance of twin automated stacking cranes at a seaport container terminal. Eur J Oper Res. 261(1):108–128.
  • Gharehgozli A, Xu C, Zhang W. 2021b. High multiplicity asymmetric traveling salesman problem with feedback vertex set and its application to storage/retrieval system. Eur J Oper Res. 289(2):495–507.
  • Gharehgozli AH, Y, Yu Y, de Koster R, Udding JT. 2014. An exact method for scheduling a yard crane. Eur J Oper Res. 235(2):431–447.
  • Gharehgozli A, Zaerpour N, de Koster R. 2020. Container terminal layout design: transition and future. Marit Econ Logist. 22(4):610–639.
  • Goerigk M, Knust S, Thanh X. 2016. Robust storage loading problems with stacking and payload constraints. Eur J Oper Res. 253(1):51–67.
  • Gorman M, Clarke JP, Gharehgozli AH, Hewitt M, de Koster R, Roy D. 2014. State of the practice: application of OR/MS in freight transportation. Interfaces. 44(6):535–554.
  • Gupta A, Roy D, de Koster R, Parhi S. 2017. Optimal stack layout in a sea container terminal with automated lifting vehicles. Int J Prod Res. 55(13):3747–3765.
  • He J, Chang D, Mi W, Yan W. 2010. A hybrid parallel genetic algorithm for yard crane scheduling. Transp Res E. 46(1):136–155.
  • He J, Huang Y, Yan W. 2015. Yard crane scheduling in a container terminal for the trade-off between efficiency and energy consumption. Adv Eng Inf. 29(1):59–75.
  • Hottung A, Tanaka S, Tierney K. 2020. Deep learning assisted heuristic tree search for the container pre-marshalling problem. Comput Oper Res. 113:104781.
  • Hottung A, Tierney K. 2016. A biased random-key genetic algorithm for the container pre-marshalling problem. Comput Oper Res. 75:83–102.
  • Hu H, Mo J, Zhen L. 2021. Improved Benders decomposition for stochastic yard template planning in container terminals. Transp Res Part C: Emerg Technol. 132:103365.
  • Huang SH, Lin TH. 2012. Heuristic algorithms for container pre-marshalling problems. Comput Indus Eng. 62(1):13–20.
  • Jang DW, Kim SW, Kim KH. 2013. The optimization of mixed block stacking requiring relocations. Int J Prod Econ. 143(2):256–262.
  • Ji M, Guo W, Zhu H, Yang Y. 2015. Optimization of loading sequence and rehandling strategy for multi-quay crane operations in container terminals. Transp Res Part E: Logistic Transp Rev. 19:1–19.
  • Jiang X, Chew EP, Lee LH, Tan KC. 2013. Flexible space-sharing strategy for storage yard management in a transshipment hub port. Or Spectrum. 35(2):417–439.
  • Jiang XJ, Jin JG. 2017. A branch-and-price method for integrated yard crane deployment and container allocation in transshipment yards. Transp Res Part B: Methodol. 98:62–75.
  • Jin JG, Lee DH, Cao JX. 2016. Storage yard management in maritime container terminals. Transport Sci. 50(4):1300–1313.
  • Jin B, Yu M. 2021. Note on the dominance rules in the exact algorithm for the container pre-marshalling problem by Tanaka & Tierney (2018). Eur J Oper Res. 293(2):802–807.
  • Jovanovic R, Tuba M, Voß S. 2017. A multi-heuristic approach for solving the pre-marshalling problem. Cent Eur J Oper Res. 25(1):1–28.
  • Kemme N. 2012. Effects of storage block layout and automated yard crane systems on the performance of seaport container terminals. Or Spectrum. 34(3):563–591.
  • Kim K, Park YM, Jin MJ. 2008. An optimal layout of container yards. Or Spectrum. 30(4):675–695.
  • Ku D, Arthanari TS. 2016a. On the abstraction method for the container relocation problem. Comput Oper Res. 68:110–122.
  • Ku D, Arthanari TS. 2016b. Container relocation problem with time windows for container departure. Eur J Oper Res. 252(3):1031–1039.
  • Law AM, Kelton DM. 1999. Simulation modeling and analysis. 3rd ed. Boston (MA): McGraw-Hill Higher Education.
  • Lee BK, Kim KH. 2010a. Comparison and evaluation of various cycle-time models for yard cranes in container terminals. Int J Prod Econ. 126(2):350–360.
  • Lee BK, Kim KH. 2010b. Optimizing the block size in container yards. Transp Res Part E: Logistic Transp Rev. 46(1): 120–135.
  • Lee LH, Chew EP, Chua KH, Sun Z, Zhen L, et al. 2011. A simulation optimization framework for container terminal layout design. In L Wang, editor. Multi-objective evolutionary optimisation for product design and manufacturing, p. 385–400. London: Springer.
  • Lee BK, Kim KH. 2013. Optimizing the yard layout in container terminals. Or Spectrum. 35(2):363–398.
  • Lehnfeld J, Knust S. 2014. Loading, unloading and premarshalling of stacks in storage areas: survey and classification. Eur J Oper Res. 239(2):297–312.
  • Linn RJ, Zhang CQ. 2003. A heuristic for dynamic yard crane deployment in a container terminal. IIE Trans. 35(2):161–174.
  • Liu C-I, Jula H, Vukadinovic K, Ioannou P. 2004. Automated guided vehicle system for two container yard layouts. Transport Res: Part C. 12(5):349–368.
  • Lu H, Wang S. 2019. A study on multi-ASC scheduling method of automated container terminals based on graph theory. Comput Indus Eng. 129:404–416.
  • Nossack J, Briskorn D, Pesch E. 2018. Container dispatching and conflict-free yard crane routing in an automated container terminal. Transport Sci. 52(5):1059–1076.
  • Parreño-Torres C, Alvarez-Valdes R, Ruiz R, Tierney K. 2020. Minimizing crane times in pre-marshalling problems. Transp Res Part E: Logistic Transp Rev. 137:101917.
  • Peng Y, Wang W, Song X, Zhang Q. 2016. Optimal allocation of resources for yard crane network management to minimize carbon dioxide emissions. J Cleaner Prod. 131:649–658.
  • Pesch E, Kuzmicz KA. 2020. Non-approximability of the single crane container transhipment problem. Int J Prod Res. 58(13):3965–3975.
  • Petering ME. 2010. Development and simulation analysis of real-time, dual-load yard truck control systems for seaport container transshipment terminals. OR Spectrum 32(3):633–661.
  • Petering MEH. 2011. Decision support for yard capacity, fleet composition, truck substitutability, and scalability issues at seaport container terminals. Transp Res Part E: Logistic Transp Rev. 47(1):85–103.
  • Rei R, Pedroso JAP. 2013. Tree search for the stacking problem. Ann Oper Res. 203(1):371–388.
  • Saini S, Roy D, de Koster R. 2017. A stochastic model for the throughput analysis of passing dual yard cranes. Comput Oper Res. 87:40–51.
  • Sha M, Zhang T, Lan Y, Zhou X, Qin T, Yu D, Chen K. 2017. Scheduling optimization of yard cranes with minimal energy consumption at container terminals. Comput Indus Eng. 113:704–713.
  • Speer U, Fischer K. 2017. Scheduling of different automated yard crane systems at container terminals. Transport Sci. 51(1):305–324.
  • Tan Z, Zhang Q, Yuan Y, Jin Y. 2022. A decision method on yard cranes transformation and deployment in green ports. Intl Trans in Op Res. 29(1):323–346.
  • Tanaka S, Tierney K. 2018. Solving real-world sized container pre-marshalling problems with an iterative deepening branch-and-bound algorithm. Eur J Oper Res. 264(1):165–180.
  • Tanaka S, Tierney K, Parreño-Torres C, Alvarez-Valdes R, Ruiz R. 2019. A branch and bound approach for large pre-marshalling problems. Eur J Oper Res. 278(1):211–225.
  • Tanaka S, Voß S. 2019. An exact algorithm for the block relocation problem with a stowage plan. Eur J Oper Res. 279(3):767–781.
  • Tanaka S, Voß S. 2022. An exact approach to the restricted block relocation problem based on a new integer programming formulation. Eur J Oper Res. 296(2):485–503.
  • The World Bank. 2021. Container port traffic (TEU: 20 foot equivalent units). Accessed 26 December 2021. https://data.worldbank.org/indicator/IS.SHP.GOOD.TU.
  • Thoresen CA. 2003. Port designer’s handbook: recommendations and guidelines. London, UK: Thomas Telford.
  • Tierney K, Pacino D, Voß S. 2017. Solving the pre-marshalling problem to optimality with A∗ and IDA∗. Flex Serv Manuf J. 29(2):223–259.
  • Ting CJ, Wu KC. 2017. Optimizing container relocation operations at container yards with beam search. Transp Res Part E: Logistic Transp Rev. 103:17–31.
  • UNCTAD. 2021. Review of maritime transport 2021. Accessed 27 December 2021. https://unctad.org/system/files/official-document/rmt2021_en_0.pdf.
  • Vis IFA. 2006. A comparative analysis of storage and retrieval equipment at a container terminal. Int J Prod Econ. 103(2):680–693.
  • Wang N, Jin B, Lim A. 2015. Target-guided algorithms for the container pre– marshalling problem. Omega. 53:67–77.
  • Wang N, Jin B, Zhang Z, Lim A. 2017. A feasibility-based heuristic for the container pre-marshalling problem. Eur J Oper Res. 256(1):90–101.
  • Wiese J, Suhl L, Kliewer N. 2010. Mathematical models and solution methods for optimal container terminal yard layouts. Or Spectrum. 32(3):427–452.
  • Wiese J, Suhl L, Kliewer N. 2013. An analytical model for designing yard layouts of a straddle carrier based container terminal. Flex Serv Manuf J. 25(4):466–502.
  • Woo YJ, Kim KH. 2011. Estimating the space requirement for outbound container inventories in port container terminals. Int J Prod Econ. 133(1):293–301.
  • Woo YJ, Song J-H, Kim KH. 2016. Pricing storage of outbound containers in container terminals. Flex Serv Manuf J. 28(4):644–668.
  • Yu D, Li D, Sha M, Zhang D. 2019. Carbon-efficient deployment of electric rubber-tyred gantry cranes in container terminals with workload uncertainty. Eur J Oper Res. 275(2):552–569.
  • Zehendner E, Caserta M, Feillet D, Schwarze S, Voß S. 2015. An improved mathematical formulation for the blocks relocation problem. Eur J Oper Res. 245(2):415–422.
  • Zehendner E, Feillet D, Jaillet P. 2017. An algorithm with performance guarantee for the online container relocation problem. Eur J Oper Res. 259(1):48–62.
  • Zey L, Briskorn D, Boysen N. 2022. Twin-crane scheduling during seaside workload peaks with a dedicated handshake area. J Schedul. 25:3–34. doi:10.1007/s10951-021-00710-w
  • Zhang C, Guan H, Yuan Y, Chen W, Wu T. 2020. Machine learning-driven algorithms for the container relocation problem. Transp Res Part B: Methodol. 139:102–131.
  • Zhang C, Wan YW, Liu J, Linn RJ. 2002. Dynamic crane deployment in container storage yards. Transp Res Part B: Methodol. 36(6):537–555.
  • Zhang C, Wu T, Kim KH, Miao L. 2014b. Conservative allocation models for outbound containers in container terminals. Eur J Oper Res. 238(1):155–165.
  • Zhang C, Wu T, Zhong M, Zheng L, Miao L. 2014a. Location assignment for outbound containers with adjusted weight proportion. Comput Oper Res. 52(A):84–93.
  • Zhen L. 2014. Storage allocation in transshipment hubs under uncertainties. Int J Prod Res. 52(1):72–88.
  • Zhen L. 2016. Modeling of yard congestion and optimization of yard template in container ports. Transp Res Part B: Methodol. 90:83–104.
  • Zhen L, Xu Z, Wang K, Ding Y. 2016. Multi-period yard template planning in container terminals. Transp Res Part B: Methodol. 93:700–719.
  • Zweers BG, Bhulai S, van der Mei RD. 2020. Pre-processing a container yard under limited available time. Comput Oper Res. 123:105045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.