138
Views
2
CrossRef citations to date
0
Altmetric
Articles

Biological control of groundnut stem rot by Bacillus sp. strain S20D12

, , , , &
Pages 625-638 | Received 03 Oct 2018, Accepted 28 Nov 2018, Published online: 16 Oct 2019

References

  • Abd-Alla EF, Ezzat SM, Sarhan MM, Abd-El-Mottleb AA. 2003. Biocontrol of peanut southern blight (Sclerotium rolfsii) by Bacillus subtilis. Egypt J Microbiol. 38:207–216.
  • Adhilakshmi M, Latha P, Paranidharan V, Balachandar D, Ganesamurthy K, Velazhahan R. 2014. Biological control of stem rot of groundnut (Arachis hypogaea L.) caused by Sclerotium rolfsii Sacc. with actinomycetes. Arch Phytopathol Plant Protect. 47(3):298–311.
  • Aycock R. 1966. Stem rot and other diseases caused by Sclerotium rolfsii or the status of Rolfs' fungus after 70 years. Raleigh (NC): Agricultural Experiment Station.
  • Chung S, Kong H, Buyer JS, Lakshman DK, Lydon J, Kim SD, Roberts DP. 2008. Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soil borne pathogens of cucumber and pepper. Appl Microbiol Biotechnol. 80(1):115–123.
  • Domenech J, Reddy MS, Kloepper JW, Ramos B, Gutierrez-Manero J. 2006. Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. BioControl 51(2):245–258.
  • Fabra A, Castro S, Taurian T, Angelini J, Ibanez F, Dardanelli M, Tonelli M, Bianucci E, Valetti L. 2010. Interaction among Arachis hypogaea L. (peanut) and beneficial soil microorganisms: how much is it known? Crit Rev Microbiol. 36(3):179–194.
  • FAO. 2018. Online publication. www.fao.org/faostat/en/#data/QC.
  • Ganesan P, Gnanamanickam SS. 1987. Biological control of Sclerotium rolfsii Sacc. In peanut by inoculation with Pseudomonas fluorescens. Soil Biol Biochem. 19(1):35–38.
  • Cawoy H, Bettiol W, Fickers P, Ongena M. 2011. Bacillus-based biological control of plant diseases. In: Stoytcheva DM, editor. Pesticides in the modern world – pesticides use and management. London (UK): InTech. Available from: http://www.intechopen.com/books/pesticides-in-themodern-world-pesticides-use-and-management/bacillus-based-biological-control-of-plant-diseases.
  • Iquebal MA, Tomar RS, Parakhia MV, Singla D, Jaiswal S, Rathod VM, Padhiyar SM, Kumar N, Rai A, Kumar D. 2017. Draft whole genome sequence of groundnut stem rot fungus Athelia rolfsii revealing genetic architect of its pathogenicity and virulence. Sci Rep. 7:017–05478.
  • Jacob S, Sajjalaguddam RR, Sudini HK. 2018. Streptomyces sp. RP1A-12 mediated control of peanut stem rot caused by Sclerotium rolfsii. J Integr Agr. 17(4):892–900.
  • Jangir M, Pathak R, Sharma S, Sharma S. 2018. Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici. Biol Control 123:60–70.
  • Karthikeyan V, Sankaralingam A, Nakkeeran S. 2006. Biological control of groundnut stem rot caused by Sclerotium rolfsii (Sacc.). Arch Phytopathol Plant Protect. 39(3):239–246.
  • Kishore GK, Pande S, Rao JN, Podile AR. 2005. Pseudomonas aeruginosa inhibits the plant cell wall degrading enzymes of Sclerotium rolfsii and reduces the severity of groundnut stem rot. Eur J Plant Pathol. 113(3):315–320.
  • Kruijt M, Tran H, Raaijmakers JM. 2009. Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. J Appl Microbiol. 107(2):546–556.
  • Kumar A, Prakash A, Johri BN. 2011. Bacillus as PGPR in crop ecosystem. In: Maheshwari DK, editor. Bacteria in agrobiology: crop ecosystems. Heidelberg (Germany): Springer-Verlag Berlin Heidelberg.
  • Le CN. 2004. Study wilt diseases on groundnut and some methods to control them in Thua Thien Hue province. J Plant Prot (Vietnamese) 1:9–15.
  • Le CN, Kruijt M, Raaijmakers JM. 2012a. Involvement of phenazines and lipopeptides in interactions between Pseudomonas species and Sclerotium rolfsii, causal agent of stem rot disease on groundnut. J Appl Microbiol. 112(2):390–403.
  • Le CN, Mendes R, Kruijt M, Raaijmakers JM. 2012b. Genetic and phenotypic diversity of Sclerotium rolfsii in groundnut fields in Central Vietnam. Plant Dis. 96(3):389–397.
  • Le CN, Hoang TK, Thai TH, Tran TL, Phan TPN, Raaijmakers JM. 2018a. Isolation, characterization and comparative analysis of plant-associated bacteria for suppression of soil-borne diseases of field-grown groundnut in Vietnam. Biol Control. 121:256–262.
  • Le CN, Thai TH, Tran DH, Nguyen TL, La TTH, Nguyen XV. 2018b. Genetic diversity of groundnut rhizosphere antagonistic bacteria and biological control of groundnut wilted diseases in central Vietnam. Legume Res. 1:6.
  • Ma Z, Hu J, Wang X, Wang S. 2014. NMR spectroscopic and MS/MS spectrometric characterization of a new lipopeptide antibiotic bacillopeptin B1 produced by a marine sediment-derived Bacillus amyloliquefaciens SH-B74. J Antibiot. 67(2):175–178.
  • Mayee CD, Datar VV. 1988. Diseases of groundnut in the tropics. Rev Tro Pl Path. 5:169–198.
  • Mora I, Cabrefiga J, Montesinos E. 2011. Antimicrobial peptide genes in Bacillus strains from plant environments. Int Microbiol. 14(4):213–223.
  • Ngo TD. 2000. Technologies to achieve high groundnut yield in Vietnam. Hanoi (Vietnam): Agriculture Publishing House.
  • Nguyen TN, Tran VM, Nguyen TT, Le CN. 2004. Research on groundnut diseases in Quang Binh provice. J Agr Rural Dev (Vienamese) 17:337–342.
  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol. 9(4):1084–1090.
  • Pastor NA, Reynoso MM, Tonelli ML, Masciarelli O, Rosas SB, Rovera M. 2010. Potential biological control Pseudomonas sp. PCI2 against damping-off of tomato caused by Sclerotium rolfsii. J Plant Pathol. 92:737–745.
  • Pradhan AK, Rath A, Pradhan N, Hazra RK, Nayak RR, Kanjilal S. 2018. Cyclic lipopeptide biosurfactant from Bacillus tequilensis exhibits multifarious activity. Biotech. 8:1–7.
  • Preecha C, Sadowsky MJ, Prathuangwong S. 2010. Lipopeptide surfactin produced by Bacillus amyloliquefaciens KPS46 is required for biocontrol efficacy against Xanthomonas axonopodis pv. glycines. Kasetsart J (Nat Sci). 44:84–99.
  • Punja ZK. 1985. The biology, ecology, and control of Sclerotium rolfsii. Annu Rev Phytopathol. 23(1):97–127.
  • Raaijmakers JM, Leeman M, Vanoorschot MMP, Vandersluis I, Schippers B, Bakker P. 1995. Dose-response relationships in biological-control of Fusarium-wilt of radish by Pseudomonas spp. Phytopathology 85(10):1075–1081.
  • Rajyaguru RH, Thirumalaisamy PP, Patel GK, Thumar TJ. 2017. Biochemical basis of genotypic and bio-agent induced stem rot resistance in groundnut. Legume Res. 40:929–939.
  • Rodríguez J, Tonelli ML, Figueredo MS, Ibáñez F, Fabra A. 2018. The lipopeptide surfactin triggers induced systemic resistance and priming state responses in Arachis hypogaea L. Eur J Plant Pathol. 152:845–851.
  • Sayyed RZ, Gangurde NS, Patel PR, Joshi SA, Chincholkar SB. 2010. Siderophore production by Alcaligenes faecalis and its application for growth promotion in Arachis hypogaea. Indian J Biotechnol. 9:302–307.
  • Song B, Rong YJ, Zhao MX, Chi ZM. 2013. Antifungal activity of the lipopeptides produced by Bacillus amyloliquefaciens anti-CA against Candida albicans isolated from clinic. Appl Microbiol Biotechnol. 97(16):7141–7150.
  • Tonelli ML, Furlan A, Taurian T, Castro S, Fabra A. 2011. Peanut priming induced by biocontrol agents. Physiol Mol Plant. 75(3):100–105.
  • Woothisak B, Sudthi S, Montien S. 1991. Yield loss assessment of peanut stem rot disease on dry pod yield. Presented at: Proceedings of the 10th Thailand National Groundnut Meeting at Kasetsart University, Bangkok (Thailand). p. 154–157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.