101
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Effect of square pulsed magnetic field exposure on growth kinetics of Dickeya solani

, ORCID Icon & ORCID Icon
Pages 989-1004 | Received 07 Jul 2019, Accepted 30 Sep 2019, Published online: 26 Oct 2019

References

  • Ahmed I, Istivan T, Cosic I, Pirogova E. 2013. Evaluation of the effects of extremely low frequency (ELF) pulsed electromagnetic fields (PEMF) on survival of the bacterium Staphylococcus aureus. EPJ Nonlinear Biomed Phys. 1(1):5. doi:10.1140/epjnbp12
  • Ali FM, El-Gebaly RH, Mohamed SA, Abdelbacki AMM. 2017. Biophysical control of the growth of Agrobacterium tumefaciens using extremely low frequency electromagnetic waves at resonance frequency. Biochem Biophys Res Commun. 494:365–371.
  • Ali FM, Elkhatib AM, Aboutaleb WM, Abdelbacki AM, Khalil AM, El-Kaliuoby MI. 2014. Control the activity of Ralstonia solanacearum bacteria by using pulsed electric field. Jokull J. 64(4):255–269.
  • Alipov YD, Belyaev IY. 1996. Di¡erence in frequency spectrum of ELF effect on the genome conformational state of AB1157 and EMG2 E. coli cells. Bioelectromagnetics. 17(5):384–387. doi:10.1002/(SICI)1521-186X(1996)17:5<384::AID-BEM5>3.0.CO;2-#
  • Ayse I, Burak A, Zafer A, Dilek A, A, Nilufer O, Tangul S. 2011. Effect of extremely low frequency electromagnetic fields on growth rate and morphology of bacteria. Int J Radiat Biol. 87(12):1155–1161.
  • Baghaee-Ravari S, Rahimian H, Shams-Bakhsh M, Lopez-Solanilla E, Antúnez-Lamas M, Rodríguez-Palenzuela P. 2011. Characterization of Pectobacterium species from Iran using biochemical and molecular methods. Eur J Plant Pathol. 129(3):413–425. doi:10.1007/s10658-010-9704-z
  • Bayır E, Bilgi E, Şendemir-Ürkmez A, Hameş-Kocabaş EE. 2015. The effects of different intensities, frequencies and exposure times of extremely low-frequency electromagnetic fields on the growth of Staphylococcus aureus and Escherichia coli O157:H7. Electromagn Biol Med. 34(1):14–18. doi:10.3109/15368378.2013.853671
  • Benson DE, Grissom CB, Burns GL, Mohammad SF. 1994. Magnetic field enhancement of antibiotic activity in biofilm forming Pseudomonas aeruginosa. ASAIO J. 40(3):371–376.
  • Blackman CF, Blanchard JP, Benane SG, House DE. 1994. Empirical test of an ion parametric resonance model for magnetic field interactions with PC-12 cells. Bioelectromagnetics. 15(3):239–260. doi:10.1002/bem.2250150307
  • Charkowski A, Blanco C, Condemine G, Expert D, Franza T, Hayes C, Hugouvieux-Cotte-Pattat N, Solanilla EL, Low D, Moleleki L, et al. 2012. The role of secretion systems and small molecules in soft rot enterobacteriaceae pathogenicity. Annu Rev Phytopathol. 50(1):425–449. doi:10.1146/annurev-phyto-081211-173013
  • Charkowsky AO. 2006. The soft rot Erwinia. In: Gnanamanickam SS, editor. Plant-associated bacteria. Dordrecht: Springer; p. 423–505.
  • Demicheli MC, Goes AM, de Andrade AS. 2007. Ultrastructural changes in Paracoccidioides brasiliensis yeast cells attenuated by gamma irradiation. Mycoses. 50:397–402. doi:10.1111/j.1439-0507.2007.01389.x
  • Dordas C. 2008. Role of nutrients in controlling plant diseases in sustainable agriculture: a review. Agron Sustain Dev. 28(1):33–46. doi:10.1051/agro:2007051
  • Elkaliuoby MI, El-Khatib AM, Khalil AM. 2019. Does engineering of nanoshapes have antibacterial synergy with magnetic signal exposure? Surf Innov. 7(5):260–267. doi:10.1680/jsuin.19.00010
  • Elkaliuoby MI, Khalil AM, El-Khatib AM, Shalaby TI. 2018. Synergistic antibacterial effect of silver nanoparticles and extremely low frequency pulsed magnetic fields on Klebsiella pneumoniae. J Appl Biol Biotechnol. 6(6):039–045.
  • El-Khatib AM, Khalil AM, El-Kaliuoby MI, Elkhatib M. 2019. The combined effects of multisized silver nanoparticles and pulsed magnetic field on K. pneumoniae. Bioinspir Biomim Nanobiomater. 8(2):154–160. doi:10.1680/jbibn.18.00042
  • Farag NS, A.Gomah A, Balabel NM. 2009. Epidemiology of potato blackleg in warm climate. Plant Pathol J. 8(1):27–31. doi:10.3923/ppj.2009.27.31
  • Fitzsimmons RJ, Ryaby JT, Magee FP, Baylink DJ. 1994. Combined magnetic fields increased net calcium flux in bone cells. Calcif Tissue Int. 55(5):376–380. doi:10.1007/BF00299318
  • Fojt L, Strasak L, Vetterl V, Smarda J. 2004. Comparison of the low frequency magnetic field effects on bacteria Escherichia coli, Lecleria adecarboxylata and Staphylococcus aureus. Bioelectrochemistry. 63(1–2):337–341. doi:10.1016/j.bioelechem.2003.11.010
  • Gobba F, Malagoli D, Ottaviani E. 2003. Effects of 50 Hz magnetic fields on fMLP-induced shape changes in invertebrate immunocytes: the role of calcium ion channels. Bioelectromagnetics. 24(4):277–282. doi:10.1002/bem.10102
  • Gomah AA, Mahmoud SM. 2007. Usage of actinobacteria to control bacterial soft rot disease of potato. Ann Agric Sci Ain Shams Univ Cairo. 52:233–239.
  • Hashizume T, Ishino F, Nakagawa J-I, Tamaki S, Matsuhashi M. 1984. Studies on the mechanism of action of imipenem (N-formimidoylthienamycin) in vitro: binding to the penicillin-binding proteins (PBPs) in Escherichia coli and Pseudomonas aeruginosa, and inhibition of enzyme activities due to the PBPs in E. coli. J Antibiot. 37(4):394–400. doi:10.7164/antibiotics.37.394
  • Inhan-Garip A, Aksu B, Akan Z, Akakin D, Ozaydin AN, San T. 2011. Effect of extremely low frequency electromagnetic fields on growth rate and morphology of bacteria. Int J Radiat Biol. 87(12):1155–1161. doi:10.3109/09553002.2011.560992
  • Ivan S, Branka S. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 275(1):177–182.
  • Justo OR, Perez VH, Alvarez DC, Alegre RM. 2006. Growth of Escherichia coli under extremely low-frequency electromagnetic fields. Appl Biochem Biotechnol. 134(2):155–163. doi:10.1385/ABAB:134:2:155
  • Kohno M, Yamazaki M, Kimura I, Wada M. 2000. Effect of static magnetic fields on bacteria: Streptococcus mutans, Staphylococcus aureus, and Escherichia coli. Pathophysiology. 7(2):143–148. doi:10.1016/S0928-4680(00)00042-0
  • López-Díez EC, Winder CL, Ashton L, Currie F, Goodacre R. 2005. Monitoring the mode of action of antibiotics using Raman spectroscopy: investigating subinhibitory effects of amikacin on Pseudomonas aeruginosa. Anal Chem. 77(9):2901–2906. doi:10.1021/ac048147m
  • Luo FL, Yang N, He C, Li HL, Li C, Chen F, Xiong JX, Hu ZA, Zhang J. 2014. Exposure to extremely low frequency electromagnetic fields alters the calcium dynamics of cultured entorhinal cortex neurons. Environ Res. 135:236–246. doi:10.1016/j.envres.2014.09.023
  • Maffei ME. 2014. Magnetic field effects on plant growth, development, and evolution. Front Plant Sci. 5:445.
  • Malagoli D, Lusvardi M, Gobba F, Ottaviani E. 2004. 50 Hz magnetic fields activate mussel immunocyte p38 MAP kinase and induce HSP70 and 90. Comp Biochem Physiol C Toxicol Pharmacol. 137(1):75–79. doi:10.1016/j.cca.2003.11.007
  • Martirosyan V. 2012. The effects of physical factors on bacterial cell proliferation. J Low Freq Noise Vibr Active Contr. 31(4):247–256. doi:10.1260/0263-0923.31.4.247
  • Masood S. 2017. Effect of weak magnetic field on bacterial growth. Biophys Rev Lett. 12(4):177–186. doi:10.1142/S1793048017500102
  • Obermeier A, Matl FD, Friess W, Stemberger A. 2009. Growth inhibition of Staphylococcus aureus induced by low-frequency electric and electromagnetic fields. Bioelectromagnetics. 30(4):270–279. doi:10.1002/bem.20479
  • Oncul S, Cuce EM, Aksu B, Inhan Garip A. 2016. Effect of extremely low frequency electromagnetic fields on bacterial membrane. Int J Radiat Biol. 92(1):42–49. doi:10.3109/09553002.2015.1101500
  • Perombelon MC. 2002. Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol. 51(1):1–12. doi:j.0032-0862.2001/j.0032-0862.2001.
  • Pesce M, Patruno A, Speranza L, Reale M. 2013. Extremely low frequency electromagnetic field and wound healing: implication of cytokines as biological mediators. Eur Cytokine Netw. 24:1–10.
  • Prato FS, Carson JJL, Ossenkopp KP, Kavaliers M. 1995. Possible mechanism by which extremely low frequency magnetic fields affect opioid function. FASEB J. 9(9):807–814. doi:10.1096/fasebj.9.9.7601344
  • Smith SD, McLeod BR, Liboff AR, Cooksey K. 1987. Calcium cyclotron resonance and diatom mobility. Bioelectromagnetics. 8(3):215–227. doi:10.1002/bem.2250080302
  • Strasak L, Vetterl V, Fojt L. 2005. Effects of 50 Hz magnetic fields on the viability of different bacterial strains. Electromagn Biol Med. 24(3):293–300. doi:10.1080/15368370500379715
  • Strasak L, Vetterl V, Smarda J. 2002. Effect of low frequency magnetic fields on bacteria Escherichia coli. Bioelectrochemistry. 55(1–2):161–164. doi:10.1016/S1567-5394(01)00152-9
  • Sudarti P, Yushardi T, Ridlo ZR, Kristinawati A. 2018. Effective dose analysis of extremely low frequency (ELF) magnetic field exposure to growth of S. thermophilus, L. lactis, L. acidophilus bacteria. IOP Conf Ser Mater Sci Eng. 43(1):012010.
  • Toth IK, van der Wolf JM, Saddler G, Lojkowska E, Hélias V, Pirhonen M, Tsror Lahkim L, Elphinstone JG. 2011. Dickeya species: an emerging problem for potato production in Europe. Plant Pathol. 60(3):385–399. doi:10.1111/j.1365-3059.2011.02427.x
  • Upadhyaya H, Begum L, Dey B, Nath PK, Panda SK. 2017. Impact of calcium phosphate nanoparticles on rice plant. J Plant Sci Phytopathol. 1:001–010.
  • U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition. 2000. Kinetics of microbial inactivation for alternative food processing technologies: oscillating magnetic fields. http://vm.cfsan.fda.gov/comm/ift-omf.html.
  • van der Wolf JM, De Boer SH. 2007. Bacterial pathogens of potato. In: Vreugdenhil D, editor. Potato biology and biotechnology, advances and perspectives. Oxford: Elsevier; p. 595–619.
  • van der Wolf JM, Nijhuis EH, Kowalewska MJ, Saddler GS, Parkinson N, Elphinstone JG, Pritchard L, Toth IK, Lojkowska E, Potrykus M, et al. 2014. Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). Int J Syst Evol Microbiol. 64(Pt 3):768–774. doi:10.1099/ijs.0.052944-0
  • Vanhauteghem D, Janssens GPJ, Lauwaerts A, Sys S, Boyen F, Cox E, Meyer E. 2013. Exposure to the proton scavenger glycine under alkaline conditions induces Escherichia coli viability loss. PLoS One. 8(3):e60328. doi:10.1371/journal.pone.0060328
  • Weber DJ, Tolkoff-Rubin NE, Rubin RH. 1984. Amoxicillin and potassium clavulanate: an antibiotic combination mechanism of action, pharmacokinetics, antimicrobial spectrum, clinical efficacy and adverse effects. Pharmacotherapy. 4(3):122–133. doi:10.1002/j.1875-9114.1984.tb03333.x
  • Williams PA, Ingebretsen RJ, Dawson RJ. 2006. 14.6 mT ELF magnetic field exposure yields no DNA breaks in model system Salmonella, but provides evidence of heat stress protection. Bioelectromagnetics. 27(6):445–450. doi:10.1002/bem.20210
  • Yakir-Blumkin MB, Loboda Y, Schächter L, Finberg J. 2014. Neuroprotective effect of weak static magnetic fields in primary neuronal cultures. Neuroscience. 278:313–326. doi:10.1016/j.neuroscience.2014.08.029
  • Zalata A, El-Samanoudy AZ, Shaalan D, El-Baiomy Y, Mostafa T. 2015. In vitro effect of cell phone radiation on motility, DNA fragmentation and cluster in gene expression in human sperm. Int J Fertil Steril. 9:129–136.
  • Zhang Y, Liu X, Zhang J, Li N. 2015. Short-term effects of extremely low frequency electromagnetic fields exposure on Alzheimer’s disease in rats. Int J Radiat Biol. 91(1):28–34. doi:10.3109/09553002.2014.954058

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.