161
Views
1
CrossRef citations to date
0
Altmetric
Article

Effect of Botrytis cinerea inoculation on the antioxidant capacity and total phenolic content in Rubus glaucus benth

&
Pages 152-163 | Received 14 Jul 2019, Accepted 31 Aug 2020, Published online: 29 Sep 2020

References

  • Armijo G, Schlechter R, Agurto M, Muñoz D, Nuñez C, Arce-Johnson P. 2016. Grapevine pathogenic microorganisms: understanding infection strategies and host response scenarios. Front Plant Sci. 7:382.
  • Blanco-Ulate B, Amrine K, Collins TS, Rivero RM, Vicente AR, Morales-Cruz A, Doyle CL, Ye Z, Allen G, Heymann H, Ebeler SE, et al. 2015. Developmental and metabolic plasticity of white-skinned grape berries in response to botrytis cinerea during noble rot. Plant Physiol. 169(4):2422–2443.
  • Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol. 28(1):25–30.
  • Camargo JM, Dunoyer AT, García-Zapateiro LA. 2016. The effect of storage temperature and time on total phenolics and enzymatic activity of sapodilla (Achras sapota L.). Rev Facultad Nacional de Agronomía. 69:7955–7963.
  • Cavazos-Garduño A, Serrano-Niño JC, García-Varela R, García HS. 2018. Anticarcinogenic Phytochemicals. In: Yahia EM, editor. Fruit and vegetable phytochemicals: chemistry and human health. Chichester, England: Wiley-Blackwell. 2nd ed; p. 53–66.
  • Chanjirakul K, Wang SY, Wang CY, Siriphanich J. 2006. Effect of natural volatile compounds on antioxidant capacity and antioxidant enzymes in raspberries. Postharvest Biol Technol. 40(2):106–115.
  • Cuéllar-Villarreal MR, Ortega-Hernández E, Becerra-Moreno A, Welti-Chanes J, Cisneros-Zevallos L, Jacobo-Velázquez DA. 2016. Effects of ultrasound treatment and storage time on the extractability and biosynthesis of nutraceuticals in carrot (Daucus carota). Postharvest Biol Technol. 119:18–26.
  • Girbau T, Stummer BE, Pocock KF, Baldock GA, Scott ES, Waters EJ. 2004. The effect of Uncinula necator (powdery mildew) and Botrytis cinerea infection of grapes on the levels of haze‐forming pathogenesis‐related proteins in grape juice and wine. Aust J Grape Wine Res. 10(2):125–133.
  • Han-Cheng W, Li-Cui L, Bin C, Liu-Ti C, Xing-Jiang C, Zhi-He Y, Chuan-Qing Z. 2018. Metabolic phenotype characterization of Botrytis cinerea, the causal agent of gray mold. Front Microbiol. 9(470):1–9.
  • Horvitz S, Chanaguano D, Arozarena I. 2017. Andean blackberries (Rubus glaucus Benth) quality as affected by harvest maturity and storage conditions. Sci Hortic. 226:293–301.
  • Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC). 1997. Frutas frescas. Mora de Castilla. Especificaciones NTC 4106. Icontec, Colombia.
  • Jacobo-Velázquez DA, González-Agüero M, Cisneros-Zevallos L. 2015. Cross-talk between signaling pathways: The link between plant secondary metabolite production and wounding stress response. Sci Rep. 5:8608.
  • Junqueira Gonçalves MP, Alarcon É, Niranjan K. 2016. The efficacy of potassium sorbatecoated packaging to control postharvest gray mold in raspberries, blackberries, and blueberries. Postharvest Biol Technol. 111:205–208.
  • Kalt W. 2005. Effects of production and processing factors on major fruit and vegetable antioxidants. J Food Sci. 70(1):R11–R19.
  • Kalt W, Forney CF, Martin A, Prior RL. 1999. Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J Agric Food Chem. 47(11):4638–4644.
  • Lattanzio V, Lattanzio VMT, Cardinali A. 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In: Imperato F, editor. Phytochemistry: advances in research. Kerala, India: Research Signpost. Chap. 2; p. 23–67.
  • Li Y, Sun S, Du C, Xu C, Zhang J, Duan C, Zhu Z. 2016. A new disease of mung bean caused by Botrytis cinerea. Crop Prot. 85:52–56.
  • Lima GP, Borges CV, Vianello F, Cisneros‐Zevallos L, Minatel IO. 2018. Phytochemicals in organic and conventional fruits and vegetables. In: Yahia EM, editor. Fruit and vegetable phytochemicals: chemistry and human health. Chichester, England: Wiley-Blackwell. 2nd ed.; p. 1305–1322.
  • Mellidou I, Koukounaras A, Chatzopoulou F, Kostas S, Kanellis AK. 2018. Plant vitamin C: one single molecule with a plethora of roles. In: Yahia EM, editor. Fruit and vegetable phytochemicals: chemistry and human health. Chichester, England: Wiley-Blackwell. 2nd ed.; p. 463–498.
  • Milosevic T, Mratinic E, Milosevic N, Glisic I, Mladenov J. 2012. Segregation of blackberry cultivars based on the fruit physico-chemical attributes. J Agric Sci. 18:100–109.
  • Minatel IO, Borges CV, Ferreira MI, Gomez HA, Chen CO, Lima GP. 2017. Phenolic compounds: functional properties, impact of processing and bioavailability. In: Soto-Hernández M, Palma-Tenango M, García-Mateos R, editors. Phenolic compounds: biological activity. Rijeka, Croatia: InTech. Chap. 1.; p. 1–24.
  • Monroy DM, Cardona WA, García MC, Bolaños MM. 2019. Relationship between variable doses of N, P, K and Ca and the physicochemical and proximal characteristics of andean blackberry (Rubus glaucus Benth.). Sci Hortic. 256:108528.
  • Muñoz S, Guerrero GE, González PA. 2020. Diagrammatic scale for measuring severity of gray mould in thornless Castilla blackberry (Rubus glaucus Benth). Ciencia Rural. 50.  (In press).
  • Neves LC, Campos AJ, Cisneros-Zevallos L, Colombo RC, Roberto SR. 2017. Postharvest behavior of camu-camu fruits based on harvesting time and nutraceutical properties. Sci Hortic. 217:276–284.
  • Neves LC, Tosin JM, Benedette RM, Cisneros-Zevallos L. 2015. Post-harvest nutraceutical behaviour during ripening and senescence of 8 highly perishable fruit species from the Northern Brazilian Amazon region. Food Chem. 174:188–196.
  • Ochoa-Velasco CE, Avila-Sosa R, Navarro-Cruz AR, López-Malo A, Palou E. 2017. Biotic and abiotic factors to increase bioactive compounds in fruits and vegetables. In: Grumezescu AM, Holban AM, editor. Handbook of food bioengineering volume 2. Food bioconversion. London, United Kingdom: Academic Press. Chap. 9.; p. 317–349.
  • Pérez A, Vidal Y, Mulkay T. 2016. Total phenolic content in 'Super Haden' mango fruits damaged by anthracnose and treated in postharvest. Cultivos Tropicales. 37:71–77.
  • Polat İ, Baysal Ö, Mercati F, Gümrükcü E, Sülü G, Kitapcı A, Araniti F, Carimi F. 2018. Characterization of Botrytis cinerea isolates collected on pepper in Southern Turkey by using molecular markers, fungicide resistance genes and virulence assay. Infect Genet Evol. 60:151–159.
  • Prior RL, Cao G, Martin A, Sofic E, McEwen J, O'Brien C, Lischner N, Ehlenfeldt M, Kalt W, Krewer G, et al. 1998. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of vaccinium species. J Agric Food Chem. 46(7):2686–2693.
  • Rienzo D, Casanoves JA, Balzarini Mg F, González L, Tablada M, Robledo CW. 2008. InfoStat versión 2008. Córdoba, Argentina: Grupo InfoStat, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba.
  • Robards K, Prenzler PD, Tucker G, Swatsitang P, Glover W. 1999. Phenolic compounds and their role in oxidative processes in fruits. Food Chem. 66(4):401–436.
  • Romanazzi G, Smilanick JL, Feliziani E, Droby S. 2016. Integrated management of postharvest gray mold on fruit crops. Postharvest Biol Technol. 113:69–76.
  • Sari P, Wijaya CH, Sajuthi D, Supratman U. 2012. Colour properties, stability, and free radical scavenging activity of jambolan (Syzygium cumini) fruit anthocyanins in a beverage model system: Natural and copigmented anthocyanins. Food Chem. 132(4):1908–1914.
  • Sepúlveda Jiménez G, Porta Ducoing H, Rocha Sosa M. 2003. La Participación de los Metabolitos Secundarios en la Defensa de las Plantas. Revista Mexicana de Fitopatología. 21:355–363.
  • Skrovankova S, Sumczynski D, Mlcek J, Jurikova T, Sochor J. 2015. Bioactive compounds and antioxidant activity in different types of berries. Int J Mol Sci. 16(10):24673–24706.
  • Torrenegra Alarcón ME, Villalobos Lagares OL, Castellar Abello EA, León Méndez G, Granados Conde C, Pajaro NP, Caro Soto MS. 2016. Evaluación de la actividad antioxidante de las pulpas de Rubus glaucus B, Vaccinium floribundum K y Beta vulgaris L. Rev Cubana De Plant Med. 21:1–8.
  • Van Baarlen P, Legendre L, Van Kan JAL. 2007. Plant defence compounds against botrytis infection. In: Elad Y, Williamson B, Tudzynski P, Delen N, editors. Botrytis: biology, pathology and control. Dordrecht: Springer; p. 143–161.
  • Vergara MF, Vargas J, Acuña JF. 2016. Physicochemical characteristics of blackberry (Rubus glaucus Benth.) fruits from four production zones of Cundinamarca, Colombia. Agron Colomb. 34(3):336–345.
  • Waterhouse AL. 2002. Determination of total phenolics. Curr Protoc Food Anal Chem. 6:I1.1.1–I1.1.8.
  • Yang Y, Ahammed GJ, Wu C, Fan S, Zhou Y. 2015. Crosstalk among Jasmonate, Salicylate and ethylene signaling pathways in plant disease and immune responses. Curr Protein Pept Sci. 16(5):450–461.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.