293
Views
9
CrossRef citations to date
0
Altmetric
Article

Effect of silicon dioxide nanoparticles and Rhizobium leguminosarum alone and in combination on the growth and bacterial blight disease complex of pea caused by Meloidogyne incognita and Pseudomonas syringae pv. pisi

&
Pages 499-515 | Received 01 Sep 2020, Accepted 17 Oct 2020, Published online: 05 Nov 2020

References

  • Al-Banna L, Salem N, Ghrair AM, Habash SS. 2018. Impact of silicon carbide nanoparticles on hatching and survival of soil nematodes Caenorhabditis elegans and Meloidogyne incognita. Appl Ecol Env Res. 16(3):2651–2662.
  • Bates LS, Waldren RT, Teare ID. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39(1):205–207.
  • Bozbuga R, Lilley CJ, Knox JP, Urwin PE. 2018. Host-specific signatures of the cell wall changes induced by the plant parasitic nematode, Meloidogyne incognita. Sci Rep. 8(1):17302
  • Bradbury M, Ahmad R. 1990. The effect of silicon on the growth of Prosopis juliflora growing in saline soil. Plant Soil. 125(1):71–74.
  • Cecchini NM, Monteoliva MI, Alvarez ME. 2011. Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiol. 155(4):1947–1959.
  • Diogo RVC, Wydra K. 2007. Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure. Physiol Mol Plant Pathol. 70 (4-6):120–129.
  • El-Argawy E, Rahhal MMH, El-Korany A, Elshabrawy EM, Eltahan RM. 2016. Efficacy of some nanoparticles to control damping off and root rot of sugar beet in El-Behiera. Asian J Plant Pathol. 11(1):35–37.
  • Epstein E. 1999. Silicon. Annu Rev Plant Physiol Plant Mol Biol. 50:641–664.
  • Fauteux F, Remus-Borel W, Menzies JG, Belanger RR. 2005. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett. 249(1):1–6.
  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L. 2015. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech. 5(4):355–377.
  • Grote D, Schmidt R, Claussen W. 2006. Water uptake and proline index as indicators of predisposition in tomato plants to Phytophthora nicotianae infection as influenced by abiotic stresses. Physiol Mol Plant Pathol. 69(4-6):121–130.
  • Harmankaya M, Özcan MM, Kardas S, Ceyhan E. 2010. Protein and mineral contents of pea (Pisum sativum L.) genotypes grown in central Anatolian region of Turkey. South-West J Hortic Biol Environ. 1(2):159–165.
  • Kashyap D, Siddiqui ZA. 2020. Effect of different inocula of Meloidogyne incognita and Pseudomonas syringae pv. pisi with and without Rhizobium leguminosarum on growth, chlorophyll, carotenoid and proline contents of pea. Indian Phytopath. 73(3):499–506.
  • Lehmann S, Funck D, Szabados L, Rentsch D. 2010. Proline metabolism and transport in plant development. Amino Acids. 39(4):949–962.
  • Liang YC, Wong JWC, Wei L. 2005. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere. 58(4):475–483.
  • Lindström K, Mousavi SA. 2020. Effectiveness of nitrogen fixation in rhizobia. In Thematic Issue on Agricultural Biotechnology. 13 (5):1314–1335.
  • Ma JF, Yamaji N. 2006. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11(8):392–397.
  • Mackinney G. 1941. Absorption of light by chlorophyll solutions. J Biol Chem. 140:315–322.
  • Maclachlan S, Zalik S. 1963. Plastid structure, chlorophyll concentration and free amino acid composition of chlorophyll mutant barley. Can J Bot. 41(7):1053–1062.
  • Marschner P. 2012. Marschner’s Mineral Nutrition of Higher Plants. London: Academic Press. p. 672.
  • Martin-Sanz A, De La Vega MP, Murillo J, Caminero C. 2013. Strains of Pseudomonas syringae pv. syringae from pea are phylogenetically and pathogenically diverse. Phytopathology. 103(7):673–681.
  • Mitani N, Ma JF. 2005. Uptake system of silicon in different plant species. J Exp Bot. 56(414):1255–1261.
  • Nesha R, Siddiqui ZA. 2013. Interactions of Pectobacterium carotovorum pv. carotovorum, Xanthomonas campestris pv. carotae and Meloidogyne javanica on the Disease Complex of Carrot. Intern. J Veg Sci. 19(4):403–411.
  • Pluskota A, Horzowski E, Bossinger O, von Mikecz A. 2009. In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence. PLoS One. 4(8):e6622.
  • Ponmurugan P, Manjukarunambika K, Elango V, Gnanamangai BM. 2016. Antifungal activity of biosynthesized copper nanoparticles evaluated against red root rot disease in tea plants. J Exp Nanosci. 11 (13):1019–1031.
  • Prasad R, Bhattacharyya A, Nguyen QD. 2017. Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol. 8:1014.
  • Ray PC, Yu H, Fu PP. 2009. Toxicity and environmental risks of nanomaterials: Challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 27(1):1–35.
  • Rungruangmaitree R, Jiraungkoorskul W. 2017. Pea, Pisum sativum, and its anticancer activity. Pharmacogn Rev. 11(21):39.
  • Sabir S, Arshad M, Chaudhari SK. 2014. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J. 2014:925494.
  • Sharma PD. 2001. Microbiology. Rastogi and Company, Meerut, India.
  • Sharma A, Haseeb A, Abuzar S. 2006. Screening of field pea (Pisum sativum) selections for their reactions to root-knot nematode (Meloidogyne incognita). J Zhejiang Univ Sci B. 7(3):209–214.
  • Siddiqui ZA, Hashmi A, Khan MR, Parveen A. 2019. Management of bacteria Pectobacterium carotovorum, Xanthomonas campestris pv. carotae, and fungi Rhizoctonia solani, Fusarium solani and Alternaria dauci with silicon dioxide nanoparticles on carrot. Intern. J Veg Sci. https://doi.org/10.1080/19315260.2019.1675843.
  • Singh G, Wright D. 2002. In vitro studies on the effects of herbicides on the growth of rhizobia. Lett Appl Microbiol. 35(1):12–16.
  • Sistani NR, Kaul HP, Desalegn G, Wienkoop S. 2017. Rhizobium impacts on seed productivity, quality, and protection of Pisum sativum upon disease stress caused by Didymella pinodes: Phenotypic, Proteomic, and Metabolomic traits. Front Plant Sci. 8:1961.
  • Tereshchenko N, Zmeeva O, Makarov B, Kravets A, Svetlichny V, Lapin I, Zotikova A, Petrova L, Yunusova T. 2017. The influence of silicon oxide nanoparticles on morphometric parameters of monocotyledons and dicotyledons in soil and climatic conditions of western Siberia, as well as on microbiological soil properties. Bio Nano Sci. 7(4):703–711.
  • Upadhyay KD, Dwivedi K. 1987. Analysis of crop losses in pea and gram due to Meloidogyne incognita. Int. Nematol Network Newsl. 4:6–7.
  • Verma AK, Arora P, Agrawal K. 2016. Incidence of bacterial blight pathogen Pseudomonas syringae pv. pisi in pea seeds grown in Rajasthan, India. Legume Res. 39(6):1034–1037.
  • Verslues PE, Sharma S. 2010. Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book. 8:e0140.
  • Volpiano CG, Lisboa BB, Granada CE, Brilhante São José JF, Rotta de Oliveira AM, Beneduzi A, Perevalova Y, Passaglia LMP, Vargas LK. 2019. Rhizobia for biological control of plant diseases. In: Kumar V., Prasad R., Kumar M., Choudhary D. editors. Microbiome in plant health and disease. Singapore: Springer. https://doi.org/10.1007/978-981-13-8495-0_14
  • Wang L, Cai K, Chen Y, Wang G. 2013. Silicon-mediated tomato resistance against Ralstonia solanacearum is associated with modification of soil microbial community structure and activity. Biol Trace Elem Res. 152(2):275–283.
  • Wang M, Gao L, Dong S, Sun Y, Shen Q, Guo S. 2017. Role of Silicon on Plant-Pathogen Interactions. Front Plant Sci. 8:701. https://doi.org/10.3389/fpls.2017.00701
  • Wu S, Lu J, Rui Q, Yu S, Cai T, Wang D. 2011. Aluminum nanoparticle exposure in L1 larvae results in more severe lethality toxicity than in L4 larvae or young adults by strengthening the formation of stress response and intestinal lipofuscin accumulation in nematodes. Environ Toxicol Pharmacol. 31(1):179–188.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.