819
Views
27
CrossRef citations to date
0
Altmetric
Article

Zinc oxide nanoparticles affect growth, photosynthetic pigments, proline content and bacterial and fungal diseases of tomato

&
Pages 1519-1538 | Received 20 Oct 2020, Accepted 10 Apr 2021, Published online: 30 Apr 2021

References

  • Ahanger MA, Agarwal R. 2017. Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L). Protoplasma. 254(4):1471–1486.
  • Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA. 2015. Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip. 29(2):221–236.
  • Arciniegas-Grijalba PA, Patiño-Portela MC, Mosquera-Sánchez LP, Guerrero-Vargas JA, Rodríguez-Páez JE. 2017. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nanosci. 7(5):225–241.
  • Auld DS. 2001. Zinc coordination sphere in biochemical zinc sites. Zinc biochemistry, physiology and homeostasis. Dordrecht, Netherlands: Springer; p. 85–127.
  • Ayers SH, Rupp P, Johnson WT. 1919. A study of alkali forming bacteria found in milk. Washington (DC): Bulletin of the U.S. Department of Agriculture; p. 782.
  • Bandyopadhyay S, Peralta-Videa JR, Hernandez-Viezcas JA, Montes MO, Keller AA, Gardea-Torresdey JL. 2012a. Microscopic and spectroscopic methods applied to the measurements of nanoparticles in the environment. Appl Spectroscopy Rev. 47(3):180–206.
  • Bandyopadhyay S, Peralta-Videa JR, Plascencia-Villa G, José-Yacamán M, Gardea-Torresdey JL. 2012b. Comparative toxicity assessment of CeO2 and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: use of advanced microscopic and spectroscopic techniques. J Hazard Mater. 241–242:379–386.
  • Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, José-Yacamán M, Peralta-Videa JR, Gardea-Torresdey JL. 2015. Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ. 516:60–69.
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–207.
  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F. 2006. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6(4):866–870.
  • Brock DA, Douglas TE, Queller DC, Strassmann JE. 2011. Primitive agriculture in a social amoeba. Nature. 469(7330):393–396.
  • Cakmak I. 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 146(2):185–205.
  • Cecchini NM, Monteoliva MI, Alvarez ME. 2011. Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiol. 155(4):1947–1959.
  • Choi O, Hu Z. 2008. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol. 42(12):4583–4588.
  • Collins K. 2007. Benefits of eating tomatoes. [accessed 2009 June 6] www.msnbc.msn.com.
  • Conn EE, Stumpf PK. 1972. Anaerobic carbohydrate metabolism. Outlines of biochemistry. 3rd ed., New York, London, Sydney: Wiley.
  • De Lannoy G. 2001. Vegetables: crop production in Tropical Africa. Brussels: Directorate General for International Cooperation; p. 403–511.
  • De Zeeuw H, Dubbeling M. 2009. Cities, food and agriculture: challenges and the way forward. Leusden: RUAF Foundation.
  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ. 2012. CuO and ZnO nanoparticles: phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat. J Nanopart Res. 14(9):1125.
  • Eisenback J. 1986. A comparison of techniques useful for preparing nematodes for scanning electron microscopy. J Nematol. 18(4):479.
  • Elmer WH, White JC. 2016. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ Sci: Nano. 3(5):1072–1079.
  • Faizan M, Faraz A, Yusuf M, Khan ST, Hayat S. 2018. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthesis 56(2):678–686.
  • Fang M, Chen JH, Xu XL, Yang PH, Hildebrand HF. 2006. Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrob Agents. 27(6):513–517.
  • Gechev TS, Hille J. 2005. Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol. 168(1):17–20.
  • Ghanepour S, Shakiba MR, Toorchi M, Oustan S. 2015. Role of Zn nutrition in membrane stability, leaf hydration status, and growth of common bean grown under soil moisture stress. JBES. 6:9–20.
  • Hou J, Wu Y, Li X, Wei B, Li S, Wang X. 2018. Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere. 193:852–860.
  • Jamdagni P, Rana JS, Khatri P, Nehra K. 2018. Comparative account of antifungal activity of green and chemically synthesized zinc oxide nanoparticles in combination with agricultural fungicides. Int J Nano Dimens. 9:198–208.
  • Kelman A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology. 64:693–695.
  • Khan M, Siddiqui ZA. 2018. Zinc oxide nanoparticles for the management of Ralstonia solanacearum, Phomopsis vexans and Meloidogyne incognita incited disease complex of eggplant. Indian Phytopathol. 71(3):355–364.
  • Klement Z, Rudolf K, Sands DC. 1990. Methods in phytobacteriology. Budapest: Akademiai Kiado; 133–141.
  • Latef AAHA, Alhmad MFA, Abdelfattah KE. 2017. The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul. 36(1):60–70.
  • Lelliott RA, Stead DE. 1987. Methods for the diagnosis of bacterial diseases of plants. Blackwell, Oxford, London: British Society for Plant Pathology.
  • Leslie JF, Summerell BA. 2006. The Fusarium laboratory manual. 1st ed. Oxford, London: Blackwell Publishing Ltd.
  • Mackinney G. 1941. Absorption of light by chlorophyll solutions. J Biol Chem. 140(2):315–322.
  • Mehrabi M, Wilson R. 2007. Intercalating gold nanoparticles as universal labels for DNA detection. Small. 3(9):1491–1495.
  • Mousavi Kouhi SM, Lahouti M, Ganjeali A, Entezar MH. 2014. Comparative phytotoxicity of ZnO nanoparticles, ZnO microparticles, and Zn2+ on rapeseed (Brassica napus L.): investigating a wide range of concentrations. Toxicol Environ Chem. 96(6):861–868.
  • Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nano level. Science. 311(5761):622–627.
  • Nesha R, Siddiqui ZA. 2013. Interactions of Pectobacterium carotovorum pv. carotovorum, Xanthomonas campestris pv. carotae, and Meloidogyne javanica on the disease complex of Carrot. Int J Veg Sci. 19(4):403–411.
  • Prasad T, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy RK, Sreeprasad TS, Sajanlal PR, Pradeep T. 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of Peanut. J Plant Nutr. 35(6):905–927.
  • Pullagurala VLR, Adisa IO, Rawat S, Kalagara S, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL. 2018. ZnO nanoparticles increase photosynthetic pigments and decrease lipid peroxidation in soil grown cilantro (Coriandrum sativum). Plant Physiol Biochem. 132:120–127.
  • Riker AJ, Riker RS. 1936. Introduction to research on plant diseases. New York (NY): John’s Swift Co.
  • Roach R, Mann R, Gambley CG, Shivas RG, Rodoni B. 2018. Identification of Xanthomonas species associated with bacterial leaf spot of tomato, capsicum and chilli crops in eastern Australia. Eur J Plant Pathol. 150(3):595–608.
  • Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L. 2019. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol Biochem. 135:160–166.
  • Sabir S, Arshad M, Chaudhari SK. 2014. Zinc oxide nanoparticles for revolutionizing agriculture: Synthesis and applications. Scientific World J. 2014:1–8.
  • Sanoubar R, Barbanti L. 2017. Fungal diseases on tomato plant under greenhouse condition. Eur J Biol Res. 7(4):299–308.
  • Schaad N, Jones JB, Chun W. 2001. Laboratory guide for identification of plant pathogenic bacteria. St. Paul (MN): APS Press.
  • Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. 2016. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – critical review. Nanotoxicology. 10 (3):257–278.
  • Senthil-Kumar M, Mysore KS. 2012. d-ornithine aminotransferase and proline dehydrogenase genes play a role in nonhost disease resistance by regulating pyrroline-5-carboxylate metabolism-induced hypersensitive response. Plant Cell Environ. 35(7):1329–1343.
  • Sharma PD. 2001. Microbiology. Meerut, India: Rastogi and Company.
  • Siddiqui ZA, Parveen A, Ahmad L, Hashem A. 2019. Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Sci Hortic. 249:374–382.
  • Simmons EG. 2007. Alternaria - An identification manual. CBS Biodiversity Series. Utrecht, The Netherlands: CBS Fungal Biodiversity Centre; p. 6.
  • Stampoulis D, Sinha SK, White JC. 2009. Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol. 43(24):9473–9479.
  • Szabó T, Németh J, Dékány I. 2003. Zinc oxide nanoparticlesincorporated in ultrathin layer silicate films and their photocatalytic properties. Colloid Surf A: Physicochem Eng Aspects. 230(1–3):23–35.
  • Takahashi F, Mizoguchi T, Yoshida R, Ichimura K, Shinozaki K. 2011. Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol Cell. 41(6):649–660.
  • Tirani MM, Haghjou MM, Ismaili A. 2019. Hydroponic grown tobacco plants respond to zinc oxide nanoparticles and bulk exposures by morphological, physiological and anatomical adjustments. Functional Plant Biol. 46(4):360–375.
  • Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman FU, Ashraf I, Sanaullah M. 2020. Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ. 721:137778.
  • Wahid A, Gelani S, Ashraf M, Foolad MR. 2007. Heat tolerance in plants: an overview. Environ Exp Bot. 61(3):199–223.
  • Wang Q, Ma X, Zhang W, Pei H, Chen Y. 2012. The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics. 4(10):1105–1112.
  • Wang XP, Li QQ, Pei ZM, Wang SC. 2018. Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biol Plant. 62(4):801–808.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.