443
Views
6
CrossRef citations to date
0
Altmetric
Articles

Foliar spray and seed priming of titanium dioxide nanoparticles and their impact on the growth of tomato, defense enzymes and some bacterial and fungal diseases

&
Pages 527-548 | Received 08 May 2021, Accepted 25 Jan 2022, Published online: 09 Feb 2022

References

  • Abdel AAH, Srivastava AK, El‐Sadek MSA, Kordrostami M, Tran LSP. 2018. Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev. 29(4):1065–1073.
  • Aebi H. 1984. Catalase in vitro. In: Colowick SP, Kaplan NO, editors. Methods in enzymology. Vol. 105. Florida: Academic Press; p. 114–121.
  • Al-Wakeel SA, Moubasher H, Gabr MMA, Madany MM. 2013. Induced systemic resistance: an innovative control method to manage branched broomrape (Orobanche ramosa L.) in tomato. IUFS J Biol. 72:9–21.
  • Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA. 2015. Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip. 29(2):221–236.
  • Alves R. d. C, de Medeiros AS, Nicolau MCM, Neto AP, de Assis Oliveira F, Lima LW, Tezotto T, Gratão PL. 2018. The partial root-zone saline irrigation system and antioxidant responses in tomato plants. Plant Physiol Biochem. 127:366–379.
  • Asada K. 1992. Ascorbate peroxidase–a hydrogen peroxide‐scavenging enzyme in plants. Physiol Plant. 85(2):235–241.
  • Azeez L, Segun AA, Abdulrasaq OO, Rasheed OA, Kazeem OT. 2019. Bioactive compounds’ contents, drying kinetics and mathematical modelling of tomato slices influenced by drying temperatures and time. J Saudi Soc. 18(2):120–126.
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–207.
  • Baxter A, Mittler R, Suzuki N. 2014. ROS as key players in plant stress signalling. J Exp Bot. 65(5):1229–1240.
  • Berber I, Önlü H. 2012. The levels of nitrite and nitrate, proline and protein profiles in tomato plants ınfected with Pseudomonas Syrıngae. Pak J Bot. 44(5):1521–1526.
  • Beyer WF, Fridovich I. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem. 161(2):559–566.
  • Brock DA, Douglas TE, Queller DC, Strassmann JE. 2011. Primitive agriculture in a social amoeba. Nature. 469(7330):393–396.
  • Cecchini NM, Monteoliva MI, Alvarez ME. 2011. Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiol. 155(4):1947–1959.
  • Chand S, Dave R. 2009. In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: an overview. Afr. J. Microbiol. Res. 3:981–996.
  • Chaudhary IJ, Singh V. 2020. Titanium dioxide nanoparticles and its impact on growth, biomass and yield of agricultural crops under environmental stress: a review. Res J Nanosci Nanotechnol. 10:1–8.
  • Chen C, Dickman MB. 2005. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc Natl Acad Sci USA. 102(9):3459–3464.
  • Cui H, Zhang P, Gu W. 2009. Application of anatase TiO2 sol derived from peroxotitannic acid in crop plant diseases control and growth regulation. Int Nanotechnol Conf Expo (Abstr.).
  • Daniel R, Guest D. 2005. Defense responses induced by potassium phosphonate in Phytophthora palmivora challenged Arabidopsis thaliana. Physiol Mol Plant Pathol. 67(3–5):194–201.
  • de Dicastillo CL, Correa MG, Martínez FB, Streitt C, Galotto MJ. 2020. Antimicrobial effect of Titanium dioxide nanoparticles. In: Antimicrobial Resistance-A One Health Perspective. DOI:10.5772/intechopen.90891.
  • De Zeeuw H, Dubbeling M. 2009. Cities, food and agriculture: challenges and the way forward. Leusden: RUAF Foundation.
  • Dixon RA, Paiva NL. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell. 7(7):1085–1097.
  • Eichert T, Kurtz A, Steiner U, Goldbach HE. 2008. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant. 134(1):151–160.
  • Frazier TP, Burklew CE, Zhang B. 2014. Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Funct Integr Genomics. 14(1):75–83.
  • Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. 2014. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal. 22(1):64–75.
  • Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour MR, Fotopoulos V, Kimura S. 2020. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci Rep. 10(1):1–14.
  • Grote D, Schmidt R, Claussen W. 2006. Water uptake and proline index as indicators of predisposition in tomato plants to Phytophthora nicotianae infection as influenced by abiotic stresses. Physiol Mol Plant Pathol. 69(4–6):121–130.
  • Haghi M, Hekmatafshar M, Janipour MB, Gholizadeh SS, Faraz MK, Sayyadifar F, Ghaedi M. 2012. Antibacterial effect of TiO2 nanoparticles on pathogenic strain of E. coli. IJABR. 3(3):621–624.
  • Hamza A, El-Mogazy S, Derbalah A. 2016. Fenton reagent and titanium dioxide nanoparticles as antifungal agents to control leaf spot of sugar beet under field conditions. J Plant Prot Res. 56(3):270–278.
  • Hayat S, Alyemeni MN, Hasan SA. 2012. Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Biol Sci. 19(3):325–335.
  • Hayles J, Johnson L, Worthley C, Losic D. 2017. Nanopesticides: a review of current research and perspectives. New Pesticides and Soil Sensors. 193–225, Academic Press. https://doi.org/10.1016/B978-0-12-804299-1.00006-0
  • Higashimoto S. 2019. Titanium-dioxide-based visible-light-sensitive photocatalysis: mechanistic insight and applications. Catalysts. 9(2):201–3390.
  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P. 2005. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res. 105(1–3):269–279.
  • Hong Z, Lakkineni K, Zhang Z, Verma DPS. 2000. Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol. 122(4):1129–1136.
  • Hu J, Wu X, Wu F, Chen W, White JC, Yang Y, Wang B, Xing B, Tao S, Wang X. 2020. Potential application of titanium dioxide nanoparticles to improve the nutritional quality of coriander (Coriandrum sativum L.). J Hazard Mater. 389:121837.
  • Kasote DM, Katyare SS, Hegde MV, Bae HH. 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 11(8):982–991.
  • Khan M, Siddiqui ZA. 2018. Zinc oxide nanoparticles for the management of Ralstonia solanacearum, Phomopsis vexans and Meloidogyne incognita incited disease complex of eggplant. Indian Phytopathol. 71(3):355–364.
  • Khan MN. 2016. Nano-titanium dioxide (Nano-TiO2) mitigates NaCl stress by enhancing antioxidative enzymes and accumulation of compatible solutes in tomato (Lycopersicon esculentum Mill.). J Plant Sci. 11:1–11.
  • Kim DS, Hwang BK. 2014. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens . J Exp Bot. 65(9):2295–2306.
  • Kim YH, Khan AL, Waqas M, Lee IJ. 2017. Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Front Plant Sci. 8:510.
  • Kühlbrandt W, Wang DN, Fujiyoshi Y. 1994. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 367(6464):614–621.
  • Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H. 2008. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res. 121(1):69–79.
  • Ma X, Wang Q, Rossi L, Ebbs SD, White JC. 2016. Multigenerational exposure to cerium oxide nanoparticles: physiological and biochemical analysis reveals transmissible changes in rapid cycling Brassica rapa. NanoImpact. 1:46–54.
  • MacDonald MJ, D’Cunha GB. 2007. A modern view of phenylalanine ammonia lyase. Biochem Cell Biol. 85(3):273–282.
  • Mackinney G. 1941. Absorption of light by chlorophyll solutions. J Biol Chem. 140(2):315–322.
  • Maclachlan S, Zalik S. 1963. Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley. Can J Bot. 41(7):1053–1062.
  • Marslin G, Sheeba CJ, Franklin G. 2017. Nanoparticles alter secondary metabolism in plants via ROS burst. Front Plant Sci. 8:832.
  • Mishra V, Mishra RK, Dikshit A, Pandey AC. 2014. Interactions of nanoparticles (NPs) with plants: an emerging perspective in agriculture industry. In: Ahmad P, and Rasool, S. editors. Emerging technologies and management of crop stress tolerance. Vol. 1. Elsevier Inc. ISBN 978-0-12-800876-8
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880.
  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A-J, Quigg A, Santschi PH, Sigg L. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 17(5):372–386.
  • Parveen A, Siddiqui ZA. 2021. Zinc oxide nanoparticles affect growth, photosynthetic pigments, proline content and bacterial and fungal diseases of tomato. Arch Phytopathol Plant Protec. 54(17-18):1519–1538.
  • Paveley ND, Lockley KD, Sylvester-Bradley R, Thomas J. 1997. Determination of fungicide sprays decisions for wheat. Pestic Sci. 49(4):379–388.
  • Pérez-de-Luque A. 2017. Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci. 5:12.
  • Pérez-Labrada F, López-Vargas ER, Ortega-Ortiz H, Cadenas-Pliego G, Benavides-Mendoza A, Juárez-Maldonado A. 2019. Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants. 8(6):151.
  • Perl A, Perl-Treves R, Galili S, Aviv D, Shalgi E, Malkin S, Galun E. 1993. Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu,Zn superoxide dismutases. Theor Appl Genet. 85(5):568–576.
  • Rafique R, Zahra Z, Virk N, Shahid M, Pinelli E, Park TJ, Kallerhoff J, Arshad M. 2018. Dose-dependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: alterations in chlorophyll content, H2O2 production, and genotoxicity. Agric Ecosyst Environ. 255:95–101.
  • Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P. 2015. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics. 7(12):1584–1594.
  • Ruffo Roberto S, Youssef K, Hashim AF, Ippolito A. 2019. Nanomaterials as alternative control means against post harvest diseases in fruit crops. Nanomaterials. 9(12):1752.
  • Salim HA, Sobita S, Abhilasha AL, Sagheer A, Yasir M, Sohail A. 2017. Integrated diseases management (IDM) against tomato (Lycopersicon esculentum L.) Fusarium wilt. J Environ Agric Sci. 11:29–34.
  • Sanoubar R, Barbanti L. 2017. Fungal diseases on tomato plant under greenhouse condition. Eur J Biol Res. 7(4):299–308.
  • Scandalios JG, Guan L, Polidoros AN. 1997. Catalases in plants: gene structure, properties, regulation, and expression. Cold Spring Harbor Monograph Series. 34:343–406.
  • Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. 2016. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants-Critical review. Nanotoxicology. 10(3):257–278.
  • Sharma P, Jha AB, Dubey RS, Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012:1–26.
  • Sharma PD. 2001. Microbiology. Meerut, India: Rastogi and Company.
  • Sheykh BN, Hasanzadeh GTA, Baghestani MM, Zand B. 2009. Study the effect of zinc foliar application on the quantitative and qualitative yield of grain corn under water stress. Electron J Crop Prod. 2:59–73.
  • Shobha G, Moses V, Ananda S. 2014. Biological synthesis of copper nanoparticles and its impact. Int J Pharm Sci Invent. 3(8):6–28.
  • Siddiqi KS, Husen A. 2017. Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol. 40:10–23.
  • Siddiqui ZA, Khan MR, AbdAllah EF, Parveen A. 2019. Titanium dioxide and zinc oxide nanoparticles affect some bacterial diseases, and growth and physiological changes of beetroot. Int J Veg Sci. 25(5):409–430.
  • Tahat MM, Sijam K, Othman R. 2012. The potential of endomycorrhizal fungi in controlling tomato bacterial wilt Ralstonia solanacearum under glasshouse conditions. Afr J Biotechnol. 11(67):13085–13094.
  • Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C. 2010. Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol. 44(3):1036–1042.
  • Valadkhan M, Mohammadi K, Nezhad MTK. 2015. Effect of priming and foliar application of nanoparticles on agronomic traits of chickpea. Biol Forum. 7:599.
  • Wang Q, Ma X, Zhang W, Pei H, Chen Y. 2012. The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics. 4(10):1105–1112.
  • Yang X, Cao C, Erickson L, Hohn K, Maghirang R, Klabunde K. 2008. Synthesis of visible-light-active TiO2-based photocatalysts by carbon and nitrogen doping. J Catal. 260(1):128–133.
  • Zhao Y, Tu K, Su J, Tu S, Hou Y, Liu F, Zou X. 2009. Heat treatment in combination with antagonistic yeast reduces diseases and elicits the active defense responses in harvested cherry tomato fruit. J Agric Food Chem. 57(16):7565–7570.
  • Zehra A, Kumar M, Meena M, S R. 2016. Mannitol and proline accumulation in Lycopersicum esculentum during infection of Alternaria alternata and its toxins. Int J Biomed Sci Bioinformatics. 3:36–68.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.