178
Views
3
CrossRef citations to date
0
Altmetric
Articles

Antifungal activity of extracts from the Antarctic plant Colobanthus quitensis Kunth. (Bartl) cultured in vitro against Botrytis cinerea Pers

ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 615-635 | Received 31 May 2021, Accepted 26 Jan 2022, Published online: 07 Feb 2022

References

  • Ahuja I, Kissen R, Bones AM. 2012. Phytoalexins in defense against pathogens. Trends Plant Sci. 17(2):73–90.
  • Álvarez-Medina A, Silva-Rojas HV, Leyva-Mir SG, Marbán-Mendoza N, Rebollar-Alviter Á. 2017. Resistencia de Botrytis cinerea de fresa (Fragaria X ananassa Duch.) a fungicidas en Michoacán México. Agrociencia. 51(7):783–798.
  • Aqueveque P, Céspedes CL, Alarcón J, Schmeda-Hirschmann G, Cañumir JA, Becerra J, Silva M, Sterner O, Radrigán R, Aranda M. 2016. Antifungal activities of extracts produced by liquid fermentations of Chilean Stereum species against Botrytis cinerea (grey mould agent). Crop Prot. 89:95–100.
  • Barros L, Dueñas M, Alves CT, Silva S, Henriques M, Santos-Buelga C, Ferreira ICFR. 2013. Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts. Ind Crops Prod. 41(1):41–45.
  • Ben Yakoub AR, Abdehedi O, Jridi M, Elfalleh W, Nasri M, Ferchichi A. 2018. Flavonoids, phenols, antioxidant, and antimicrobial activities in various extracts from Tossa jute leave (Corchorus olitorus L.). Ind Crops Prod. 118:206–213.
  • Bika R, Baysal-Gurel F, Jennings C. 2021. Botrytis cinerea management in ornamental production: a continuous battle. Can J Plant Pathol. 43(3):345–365.
  • Bill M, Sivakumar D, Korsten L, Thompson AK. 2014. The efficacy of combined application of edible coatings and thyme oil in inducing resistance components in avocado (Persea americana Mill.) against anthracnose during post-harvest storage. Crop Prot. 64:159–167.
  • Borges RM. 2008. Plasticity comparisons between plants and animals: concepts and mechanisms. Plant Signal Behav. 3(6):367–375.
  • Bravo LA, Griffith M. 2005. Characterization of antifreeze activity in Antarctic plants. J Exp Bot. 56(414):1189–1196.
  • Broad GM, Marschall W, Ezzeddine M. 2021. Perceptions of high-tech controlled environment agriculture among local food consumers: using interviews to explore sense-making and connections to good food. Agric Hum Values. doi:https://doi.org/10.1016/j.ijhcs.2020.102562
  • Brühwiler V, Sieber TN. 2021. Aqueous leaf extract of Ligustrum vulgare inhibits ascospore germination and mycelial growth of Hymenoscyphus fraxineus. For Path. 51(1):1–8.
  • Calvo-Garrido C, Viñas I, Elmer PA, Usall J, Teixidó N. 2014. Suppression of Botrytis cinerea on necrotic grapevine tissues by early-season applications of natural products and biological control agents. Pest Manag Sci. 70(4):595–602.
  • Chaharsooghi SK, Honarvar M, Modarres M. 2011. A multi-stage stochastic programming model for dynamic pricing and lead time decisions in multi-class make-to-order firm. Sci Iranica. 18(3):711–721.
  • Combrinck S, Regnier T, Kamatou GPP. 2011. In vitro activity of eighteen essential oils and some major components against common postharvest fungal pathogens of fruit. Ind Crops Prod. 33(2):344–349.
  • Contreras RA, Köhler H, Pizarro M, Zúiga GE. 2015. In vitro cultivars of Vaccinium corymbosum L. (Ericaceae) are a source of antioxidant phenolics. Antioxidants. 4(2):281–292.
  • Dave K, Gothalwal R, Singh M, Joshi N. 2021. Facets of rhizospheric microflora in biocontrol of phytopathogen Macrophomina phaseolina in oil crop soybean. Arch Microbiol. 203(2):405–412.
  • Feng M, Lv Y, Li T, Li X, Liu J, Chen X, Zhang Y, Chen X, Wang A. 2021. Postharvest treatments with three yeast strains and their combinations to control Botrytis cinerea of snap beans. Foods. 10(11):2736.
  • Fernandez-Ortuño D, Grabke A, Li X, Schnabel G. 2015. Independent emergence of resistance to seven chemical classes of fungicides in Botrytis cinerea. Phytopathology. 105(4):424–432.
  • Gabaston J, Richard T, Cluzet S, Palos Pinto A, Dufour MC, Corio-Costet MF, Mérillon JM. 2017. Pinus pinaster Knot: a source of polyphenols against Plasmopara viticola. J Agric Food Chem. 65(40):8884–8891.
  • Ghorbani E, Dabbagh Moghaddam A, Sharifan A, Kiani H. 2021. Emergency food product packaging by pectin-based antimicrobial coatings functionalized by pomegranate peel extracts. J Food Qual. 2021:1–10.
  • Herrera-Romero I, Ruales C, Caviedes M, Leon-Reyes A. 2017. Postharvest evaluation of natural coatings and antifungal agents to control Botrytis cinerea in Rosa sp. Phytoparasitica. 45(1):9–20.
  • Hussain MI, Danish S, Sánchez-Moreiras AM, Vicente Ó, Jabran K, Chaudhry UK, Branca F, Reigosa MJ. 2021. Unraveling sorghum allelopathy in agriculture: concepts and implications. Plants. 10(9):1795.
  • Imran M, Ali EF, Hassan S, Abo-Elyousr KAM, Sallam NM, Khan MMM, Younas MW. 2021. Characterization and sensitivity of Botrytis cinerea to benzimidazole and succinate dehydrogenase inhibitors fungicides, and illustration of the resistance profile. Austral Plant Pathol. 50(5):589–601.
  • Jacometti MA, Wratten SD, Walter M. 2010. Review: alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Austral J Grape Wine Res. 16(1):154–172.
  • Kalisz S, Kivlin SN, Bialic-Murphy L. 2021. Allelopathy is pervasive in invasive plants. Biol Invasions. 23(2):367–371.
  • Kilani-Feki O, Ben Khedher S, Dammak M, Kamoun A, Jabnoun-Khiareddine H, Daami-Remadi M, Tounsi S. 2016. Improvement of antifungal metabolites production by Bacillus subtilis V26 for biocontrol of tomato postharvest disease. Biol Control. 95:73–82.
  • Latorre BA, Torres R. 2012. Prevalence of isolates of Botrytis cinerea resistant to multiple fungicides in Chilean vineyards. Crop Prot. 40:49–52.
  • Laurent A, Makowski D, Aveline N, Dupin S, Miguez FE. 2021. On-farm trials reveal significant but uncertain control of Botrytis cinerea by Aureobasidium pullulans and potassium bicarbonate in organic grapevines. Front Plant Sci. 12:620786.
  • Leroux P, Fritz R, Debieu D, Albertini C, Lanen C, Bach J, Gredt M, Chapeland F. 2002. Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manag Sci. 58(9):876–888.
  • Li X, Fernández-Ortuño D, Chen S, Grabke A, Luo CX, Bridges WC, Schnabel G. 2014. Location-specific fungicide resistance profiles and evidence for stepwise accumulation of resistance in Botrytis cinerea. Plant Dis. 98(8):1066–1074.
  • Li Y, Shao X, Xu J, Wei Y, Xu F, Wang H. 2017. Tea tree oil exhibits antifungal activity against Botrytis cinerea by affecting mitochondria. Food Chem. 234:62–67.
  • Lu ZH, Abdelhai Senosy I, Zhou DD, Yang ZH, Guo HM, Liu X. 2021. Synthesis and adsorption properties investigation of Fe3O4@ZnAl-LDH@MIL-53(Al) for azole fungicides removal from environmental water. Sep Purif Technol. 276:119282.
  • Marín A, Atarés L, Chiralt A. 2017. Improving function of biocontrol agents incorporated in antifungal fruit coatings: a review. Biocontrol Sci Technol. 27(10):1220–1241.
  • Mendoza L, Yañez K, Vivanco M, Melo R, Cotoras M. 2013. Characterization of extracts from winery by-products with antifungal activity against Botrytis cinerea. Ind Crops Prod. 43(1):360–364.
  • Morales J, Mendoza L, Cotoras M. 2016. Alteration of oxidative phosphorylation as a possible mechanism of the antifungal action of p-coumaric acid against Botrytis cinerea. Int J Labor Hematol. 38(1):42–49.
  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, et al. 2010. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15(12):684–692.
  • Olea AF, Bravo A, Martínez R, Thomas M, Sedan C, Espinoza L, Zambrano E, Carvajal D, Silva-Moreno E, Carrasco H. 2019. Antifungal activity of eugenol derivatives against Botrytis cinerea. Molecules. 24(7):1239.
  • Palareti G, Legnani C, Cosmi B, Antonucci E, Erba N, Poli D, Testa S, Tosetto A, De Micheli V, Ghirarduzzi A, et al. 2016. Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: analysis of results obtained in the DULCIS study. Int J Lab Hem. 38(1):42–49.
  • Panahirad S, Dadpour M, Peighambardoust SH, Soltanzadeh M, Gullón B, Alirezalu K, Lorenzo JM. 2021. Applications of carboxymethyl cellulose- and pectin-based active edible coatings in preservation of fruits and vegetables: a review. Trends Food Sci Technol. 110:663–673.
  • Pereira PCG, Parente CET, Carvalho GO, Torres JPM, Meire RO, Dorneles PR, Malm O. 2021. A review on pesticides in flower production: a push to reduce human exposure and environmental contamination. Environ Pollut. 289:117817.
  • Piasecka A, Jedrzejczak-Rey N, Bednarek P. 2015. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytol. 206(3):948–964.
  • Popović BM, Blagojević B, Ždero Pavlović R, Mićić N, Bijelić S, Bogdanović B, Mišan A, Duarte CMM, Serra AT. 2020. Comparison between polyphenol profile and bioactive response in blackthorn (Prunus spinosa L.) genotypes from north Serbia-from raw data to PCA analysis. Food Chem. 302:125373.
  • Rashed K, Ćirić A, Glamočlija J, Soković M. 2014. Antibacterial and antifungal activities of methanol extract and phenolic compounds from Diospyros virginiana L. Ind Crops Prod. 59:210–215.
  • Ribera A, Cotoras M, Zúñiga GE. 2008. Effect of extracts from in vitro-grown shoots of Quillaja saponaria Mol. on Botrytis cinerea Pers. World J Microbiol Biotechnol. 24(9):1803–1811.
  • Ribes S, Fuentes A, Talens P, Barat JM. 2018. Prevention of fungal spoilage in food products using natural compounds: a review. Crit Rev Food Sci Nutr. 58(12):2002–2016.
  • Robinson SA, Wasley J, Tobin AK. 2003. Living on the edge – plants and global change in continental and maritime Antarctica. Global Change Biol. 9(12):1681–1717.
  • Rodríguez-Cabo T, Rodríguez I, Ramil M, Cela R. 2018. Assessment of alcoholic distillates for the extraction of bioactive polyphenols from grapevine canes. Ind Crops Prod. 111:99–106.
  • Romeo FV, Ballistreri G, Fabroni S, Pangallo S, Li Destri Nicosia MG, Schena L, Rapisarda P. 2015. Chemical characterization of different sumac and pomegranate extracts effective against Botrytis cinerea rots. Molecules. 20(7):11941–11958.
  • Ross C, Puglisi MP, Paul VJ. 2008. Antifungal defenses of seagrasses from the Indian River Lagoon, Florida. Aquat. Bot. 88(2):134–141.
  • Ruhland CT, Day TA. 2000. Effects of ultraviolet-B radiation on leaf elongation, production and phenylpropanoid concentrations of Deschampsia antarctica and Colobanthus quitensis in Antarctica. Physiol Plant. 109(3):244–251.
  • Rull RP, Ritz B, Shaw GM. 2006. Neural tube defects and maternal residential proximity to agricultural pesticide applications. Am J Epidemiol. 163(8):743–753.
  • Saleh R, Bearth A, Siegrist M. 2021. How chemophobia affects public acceptance of pesticide use and biotechnology in agriculture. Food Qual Preference. 91:104197.
  • Salgado M, Rodríguez-Rojo S, Alves-Santos FM, Cocero MJ. 2015. Encapsulation of resveratrol on lecithin and β-glucans to enhance its action against Botrytis cinerea. J Food Eng. 165:13–21.
  • Salvatierra-Martinez R, Arancibia W, Araya M, Aguilera S, Olalde V, Bravo J, Stoll A. 2018. Colonization ability as an indicator of enhanced biocontrol capacity – an example using two Bacillus amyloliquefaciens strains and Botrytis cinerea infection of tomatoes. J Phytopathol. 166(9):601–612.
  • Sánchez-Bayo F. 2021. Indirect effect of pesticides on insects and other arthropods. Toxics. 9(8):177.
  • Santis-Espinosa LF, Perez-Sariñana BY, Guerrero-Fajardo CA, Saldaña-Trinidad S, Lopéz-Vidaña EC, Sebastian PJ. 2015. Drying mango (Mangifera indica L.) with solar energy as a pretreatment for bioethanol production. BioResources. 10(3):6044–6054.
  • Sequeida Á, Tapia E, Ortega M, Zamora P, Castro Á, Montes C, Zúñiga GE, Prieto H. 2012. Production of phenolic metabolites by Deschampsia antarctica shoots using UV-B treatments during cultivation in a photobioreactor. Electron J Biotechnol. 15(4): article 7.
  • Shahid I, Han J, Hanooq S, Malik KA, Borchers CH, Mehnaz S. 2021. Profiling of metabolites of Bacillus spp. and their application in sustainable plant growth promotion and biocontrol. Front Sustain Food Syst. 5:1–14.
  • Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R,Siuzdak G. 2005. MET LIN: a metabolite mass spectral database. Ther Drug Monit. 27(6):747–751.
  • Sopeña F, Bending GD. 2013. Impacts of biochar on bioavailability of the fungicide azoxystrobin: a comparison of the effect on biodegradation rate and toxicity to the fungal community. Chemosphere. 91(11):1525–1533.
  • Stefani A, Felício JD, de Andréa MM. 2012. Comparative assessment of the effect of synthetic and natural fungicides on soil respiration. Sensors. 12(3):3243–3252.
  • Tocci N, Weil T, Perenzoni D, Narduzzi L, Madriñán S, Crockett S, Nürk NM, Cavalieri D, Mattivi F. 2018. Phenolic profile, chemical relationship and antifungal activity of Andean Hypericum species. Ind Crops Prod. 112:32–37.
  • Toumatia O, Compant S, Yekkour A, Goudjal Y, Sabaou N, Mathieu F, Sessitsch A, Zitouni A. 2016. Biocontrol and plant growth promoting properties of Streptomyces mutabilis strain IA1 isolated from a Saharan soil on wheat seedlings and visualization of its niches of colonization. S Afr J Bot. 105:234–239.
  • Turgut E, Gungor O, Kirpik H, Kose A, Gungor SA, Kose M. 2021. Benzimidazole ligands with allyl, propargyl or allene groups, DNA binding properties, and molecular docking studies. Appl Organomet Chem. 35(9):1–14.
  • Wang X, Wang M, Cao J, Wu Y, Xiao J, Wang Q. 2017. Analysis of flavonoids and antioxidants in extracts of ferns from Tianmu Mountain in Zhejiang Province (China). Ind Crops Prod. 97:137–145.
  • Wianowska D, Garbaczewska S, Cieniecka-Roslonkiewicz A, Dawidowicz AL, Jankowska A. 2016. Comparison of antifungal activity of extracts from different Juglans regia cultivars and juglone. Microb Pathog. 100:263–267.
  • Williamson B, Tudzynski B, Tudzynski P, Van Kan JAL. 2007. Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol. 8(5):561–580.
  • Zamora P, Rasmussen S, Pardo A, Prieto H, Zúñiga GE. 2010. Antioxidant responses of in vitro shoots of Deschampsia antarctica to polyethylene glycol treatment. Antarct Sci. 22(2):163–169.
  • Zhu H, Huang CT, Ji MS. 2016. Baseline sensitivity and control efficacy of pyrisoxazole against Botrytis cinerea. Eur J Plant Pathol. 146(2):315–323.
  • Zúñiga GE, Alberdi M, Corcuera LJ. 1996. Non-structural carbohydrates in Deschampsia Antarctica desv. from South Shetland Islands, maritime antarctic. Environ. Exp. Bot. 36(4):393–399.
  • Zúñiga GE, Zamora P, Ortega M, Obrecht A. 2009. Short note: micropropagation of Antarctic Colobanthus quitensis. Antarct Sci. 21(2):149–150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.