151
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Enhancement of soil suppressive potential to bacterial wilt disease caused by Ralstonia solanacearum

ORCID Icon, , , , &
Pages 1127-1165 | Received 16 Jan 2023, Accepted 03 Oct 2023, Published online: 26 Oct 2023

References

  • Anonymous. 1998. Council Directive 98/57/EC of 20 July 1998 on the control of Ralstonia solanacearum Annex II-test scheme for the diagnosis, detection and identification of Ralstonia solanacearum. O J Eur Comm. L235:8–39.
  • Aloyce A, Ndakidemi PA, Mbega ER. 2017. Identification and management challenges associated with Ralstonia solanacearum (Smith), causal agent of bacterial wilt disease of tomato in Sub-Saharan Africa. Pak J Biol Sci. 20(11):530–542. doi: 10.3923/pjbs.2017.530.542.
  • AOAC. 1990. Official methods of analysis. Arlington (VA): Association of Analytical Chemists.
  • Babich H, Stotzky G. 1980. Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms. Crit Rev Microbiol. 8(2):99–145. doi: 10.3109/10408418009081123.
  • Bahadou SA, Ouijja A, Karfach A, Tahiri A, Lahlali R. 2018. New potential bacterial antagonists for the biocontrol of fire blight disease (Erwinia amylovora) in Morocco. Microb Pathog. 117:7–15. doi: 10.1016/j.micpath.2018.02.011.
  • Berg G. 2009. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol. 84(1):11–18. doi: 10.1007/s00253-009-2092-7.
  • Elsayed TR, Jacquiod S, Nour EH, Sørensen SJ, Smalla K. 2019. Biocontrol of bacterial wilt disease through complex interaction between tomato plant, antagonists, the indigenous rhizosphere microbiota, and Ralstonia solanacearum. Front Microbiol. 10:2835. doi: 10.3389/fmicb.2019.02835.
  • Cacciari I, Lippi D. 1987. Arthrobacters: successful arid soil bacteria: a review. Arid Soil Res Rehabil. 1(1):1–30. doi: 10.1080/15324988709381125.
  • Cao Y, Thomashow LS, Luo Y, Hu H, Deng X, Liu H, Shen Z, Li R, Shen Q. 2022. Resistance to bacterial wilt caused by Ralstonia solanacearum depends on the nutrient condition in soil and applied fertilizers: a meta-analysis. Agri Eco Environ. 329:107874. ISSN 0167-8809. doi: 10.1016/j.agee.2022.107874.
  • Debode J, De Tender C, Soltaninejad S, Van Malderghem C, Haegeman A, Van der Linden I, Cottyn B, Heyndrickx M, Maes M. 2016. Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology. Front Microbiol. 7:565. doi: 10.3389/fmicb.2016.00565.
  • Devaux A, Goffart JP, Kromann P, Andrade-Piedra J, Polar V, Hareau G. 2021. The potato of the future: opportunities and challenges in sustainable agri-food systems. Potato Res. 64(4):681–720. doi: 10.1007/s11540-021-09501-4.
  • Dias MP, Bastos MS, Xavier VB, Cassel E, Astarita LV, Santarém ER. 2017. Plant growth and resistance promoted by Streptomyces spp. in tomato. Plant Physiol Biochem. 118:479–493. doi: 10.1016/j.plaphy.2017.07.017.
  • Elhalag KM, Emara HM, Messiha NAS, Elhadad SA, Abdallah SA. 2015. The relation of different crop roots exudates to the survival and suppressive effect of Stenotrophomonas maltophilia (PD4560), biocontrol agent of bacterial wilt of potato. J Phytopathol. 163(10):829–840. doi: 10.1111/jph.12381.
  • Farag NS, Fawzi FG, El-Said SIA, Mikhail MS. 1986. Streptomycin in relation to potato brown rot control. Acta Phytopathol Entomol Hung. 21:115–122.
  • Farag N, Stead DE, Janse JD. 1999. Ralstonia (Pseudomonas) solanacearum detected in surface irrigation water in Egypt. J Phytopathol. 147:374–376. doi: 10.1111/j.1439-0434.1999.tb03854.x.
  • Fujiwara A, Fujisawa M, Hamasaki R, Kawasaki T, Fujie M, Yamada T. 2011. Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl Environ Microbiol. 77(12):4155–4162. doi: 10.1128/AEM.02847-10.
  • Gashaw T, Sitotaw B, Yilma S. 2022. Evaluation of rhizosphere bacterial antagonists against Ralstonia solanacearum causing tomato (Lycopersicon esculentum) wilt in central Ethiopia. Int J Agron. 2022:6341555. doi: 10.1155/2022/6341555.
  • Gökçen A, Vilcinskas A, Wiesner J. 2014. Biofilm-degrading enzymes from Lysobacter gummosus. Virulence. 5(3):378–387. doi: 10.4161/viru.27919.
  • Grey BE, Steck TR. 2001. The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Appl Environ Microbiol. 67(9):3866–3872. doi: 10.1128/AEM.67.9.3866-3872.2001.
  • Hamed SM, Messiha NAS. 2018. Management of bacterial wilt disease by Some Marine Macroalgal Extracts Isolated from Safaga Coast of Red Sea. Egypt J Agric Res. 96(4):1275–1289. doi: 10.1007/s13205-019-1958-3.
  • Hashem A, Tabassum B, Fathi Abd Allah E. 2019. Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci. 26(6):1291–1297. doi: 10.1016/j.sjbs.2019.05.004.
  • Hayashi S, Furusaka C. 1979. Studies on Propionibacterium isolated from paddy soils. Antonie Van Leeuwenhoek. 45(4):565–574. doi: 10.1007/BF00403656.
  • Hiddink GA, Termorshuizen AJ, Raaijmakers JM, van Bruggen AHC. 2005. Effect of mixed and single crops on disease suppressiveness of soils. Phytopathol. 95(11):1325–1332. doi: 10.1094/Phyto-95-1325.
  • Hu Y, Li C, Yang X, Feng J, Wang L, Chen S, Li Y, Yang Y. 2021. Integrated biological control of tobacco bacterial wilt (Ralstonia solanacearum) and its effect on rhizosphere microbial community. JBM. 09(03):124–142. doi: 10.4236/jbm.2021.93012.
  • ICARDA. 2013. Methods of soil, plant, and water analysis: a manual for the West Asia and North Africa region (Estefan G, Sommer R, Ryan J, editors). 3rd ed. Beirut: ICARDA; p. 243.
  • Innerebner G, Knief C, Vorholt JA. 2011. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol. 77(10):3202–3210. doi: 10.1128/AEM.00133-11.
  • Janků J, Kosánová M, Kozák J, Herza T, Jehlička J, Maitah M, Vopravil J, Němeček K, Toth D, Jacko K, et al. 2022. Using of soil quality indicators to assess their production and ecological functions. Soil Water Res. 17(1):45–58. doi: 10.17221/146/2021-SWR.
  • Janse JD. 1988. A detection method for Pseudomonas solanacearum in symptomless potato tubers and some data on its sensitivity and specificity. Bull. OEPP/EPPO Bull. 18(3):343–351. doi: 10.1111/j.1365-2338.1988.tb00385.x.
  • Janse JD. 1996. Potato brown rot in western Europe – history, present occurrence and some remarks on possible origin, epidemiology and control strategies. EPPO Bull. 26(3–4):679–695. doi: 10.1111/j.1365-2338.1996.tb01512.x.
  • Karim Z, Hossain MS. 2018. Management of bacterial wilt (Ralstonia solanacearum) of potato: focus on natural bioactive compounds. J Biodivers Conserv Bioresour Manag. 4(1):73–92. doi: 10.3329/jbcbm.v4i1.37879.
  • Khairy AM, Tohamy MRA, Zayed MA, Ali MAS. 2021. Detecting pathogenic bacterial wilt disease of potato using biochemical markers and evaluate resistant in some cultivars. Saudi J Biol Sci. 28(9):5193–5203. doi: 10.1016/j.sjbs.2021.05.045.
  • Khalil S. 2011. Influence of electrical conductivity on the biological activity of Pythium ultimum and Binab T in a closed soilless system. J Plant Dis Prot. 118(3–4):102–108. doi: 10.1007/BF03356389.
  • Koffi-Nevry R, Assi-Clair B, Koussémon M, Wognin A, Coulibaly N. 2011. Potential enterobacteria risk factors associated with contamination of lettuce (Lactuca sativa) grown in the peri-urban area of Abidjan (Côte d’Ivoire). Int J Biol Chem Sci. 5(1):68104. doi: 10.4314/ijbcs.v5i1.68104.
  • Kong HG, Bae JY, Lee HJ, Joo HJ, Jung EJ, Chung E, Lee SW. 2014. Induction of the viable but nonculturable state of Ralstonia solanacearum by low temperature in the soil microcosm and its resuscitation by catalase. PLoS One. 9(10):e109792. doi: 10.1371/journal.pone.0109792.
  • Lens PN, Kuenen JG. 2001. Ammonia-oxidising bacteria: a model for molecular microbial ecology. Annu Rev Microbiol. 55:485–529. doi: 10.1146/annurev.micro.55.1.485.
  • Lin H, Liu C, Li B, Dong Y. 2021. Trifolium repens L. regulated phytoremediation of heavy metal contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated microorganisms. J Hazard Mater. 402:123829. doi: 10.1016/j.jhazmat.2020.123829.
  • Lupwayi NZ, Rice WA, Clayton GW. 1998. Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol Biochem. 30(13):1733–1741. doi: 10.1016/S0038-0717(98)00025-X.
  • Mazzola M, Freilich S. 2017. Prospects for biological soil borne disease control: application of indigenous versus synthetic microbiomes. Phytopathol. 107(3):256–263. doi: 10.1094/PHYTO-09-16-0330-RVW.
  • McBride MJ, Liu W, Lu X, Zhu Y, Zhang W. 2014. The family cytophagaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-38954-2_382.
  • Mekonnen H, Kibret M, Assefa F. 2022. Plant growth promoting rhizobacteria for biocontrol of tomato bacterial wilt caused by Ralstonia solanacearum. Int J Agron. 2022:1489637. doi: 10.1155/2022/1489637.
  • Messiha NAS. 2006. Bacterial wilt of potato (Ralstonia solanacearum race 3 biovar 2): disease management, survival of the pathogen and possible eradication [PhD thesis]. The Netherlands: Wageningen University.
  • Messiha NAS, Elhalag KMA. 2019. Organic versus mineral fertilization regimes in relation to potato brown rot suppression and crop production. Egy J Phytopathol. 47(1):237–256. doi: 10.21608/ejp.2019.120386.
  • Messiha NAS, Elhalag KM, Balabel NM, Matar HA, Farag SMA, Hagag MH, Khairy AM, Abd El-Aliem MM, Hanafy MS, Farag NS. 2021. Efficiency of organic manuring and mineral fertilization regimes in potato brown rot suppression and soil microbial biodiversity under field conditions. Arch Phytopathol Plant Protect. 54(9-10):534–556. doi: 10.1080/03235408.2020.1844523.
  • Messiha NAS, Elhalag KM, Balabel NM, Farag SM, Matar HA, Hagag MH, Khairy AM, El-Aliem A, Eleiwa MM, Saleh E, et al. 2019. Microbial biodiversity as related to crop succession and potato intercropping for management of brown rot disease. Egypt J Biol Pest Control. 29(1):84. doi: 10.1186/s41938-019-0185-x.
  • Messiha NAS, van Bruggen AHC, van Diepeningen AD, de Vos OJ, Termorshuizen AJ, Tjou-Tam-Sin NNA, Janse JD. 2007. Potato brown rot incidence and severity under different management and amendment regimes in different soil types. Eur J Plant Pathol. 119(4):367–381. doi: 10.1007/s10658-007-9167-z.
  • Messiha NAS, van Diepeningen AD, Farag NS, Abdallah SA, Janse JD, van Bruggen AHC. 2007. Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. Eur J Plant Pathol. 118(3):211–225. doi: 10.1007/s10658-007-9136-6.
  • Messiha NAS, van Diepeningen AD, Wenneker M, van Beuningen AR, Janse JD, Coenen TGC, Termorshuizen AJ, van Bruggen AHC, Blok WJ. 2007. Biological soil disinfestation, a new control method for potato brown rot, caused by Ralstonia solanacearum race 3 biovar 2. Eur J Plant Pathol. 117(4):403–415. doi: 10.1007/s10658-007-9109-9.
  • Ofek M, Hadar Y, Minz D. 2012. Ecology of root colonizing massilia (Oxalobacteraceae). PLoS One. 7(7):e40117. doi: 10.1371/journal.pone.0040117.
  • Ortiz A, Sansinenea E. 2022. The role of beneficial microorganisms in soil quality and plant health. Sustainability. 14(9):5358. doi: 10.3390/su14095358.
  • Palaniyandi SA, Yang SH, Zhang L, Joo-Won S. 2013. Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol. 97(22):9621–9636. doi: 10.1007/s00253-013-5206-1.
  • Palumbo JD, Yuen GY, Jochum CC, Tatum K, Kobayashi DY. 2005. Mutagenesis of beta-1,3-glucanase genes in Lysobacter enzymogenes strain c3 results in reduced biological control activity toward bipolaris leaf spot of tall fescue and pythium damping-off of sugar beet. Phytopathol. 95(6):701–707. doi: 10.1094/PHYTO-95-0701.
  • Paret ML, Cabos R, Kratky BA, Alvarez AM. 2010. Effect of plant essential oils on Ralstonia solanacearum race 4 and bacterial wilt of edible ginger. Plant Dis. 94(5):521–527. doi: 10.1094/PDIS-94-5-0521.
  • PM 7/21 (3). 2022. Ralstonia solanacearum, R. pseudosolanacearum and R. syzygii (Ralstonia solanacearum species complex). EPPO Bull. 52:225–261. doi: 10.1111/epp.12837.
  • Postma J, Nijhuis EH, Yassin AF. 2010. Genotypic and phenotypic variation among Lysobacter capsici strains isolated from Rhizoctonia suppressive soils. Syst Appl Microbiol. 33(4):232–235. doi: 10.1016/j.syapm.2010.03.002.
  • Presta L, Bosi E, Fondi M, Maida I, Perrin E, Miceli E, Maggini V, Bogani P, Firenzuoli F, Di Pilato V, et al. 2017. Phenotypic and genomic characterization of the antimicrobial producer Rheinheimera sp. EpRS3 isolated from the medicinal plant Echinacea purpurea: insights into its biotechnological relevance. Res Microbiol. 168(3):293–305. doi: 10.1016/j.resmic.2016.11.001.
  • Rao DLN, Aparna K, Mohanty SR. 2019. Microbiology and biochemistry of soil organic matter, carbon sequestration and soil health. Indian J Fert. 15(2):124–138.
  • Sang MK, Kim KD. 2012. The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J Appl Microbiol. 113(2):383–398. doi: 10.1111/j.1365-2672.2012.05330.x.
  • Schipanski ME, Drinkwater LE. 2011. Nitrogen fixation of red clover interseeded with winter cereals across a management-induced fertility gradient. Nutr Cycl Agroecosyst. 90(1):105–119. doi: 10.1007/s10705-010-9415-z.
  • Schönfeld J, Gelsomino A, Overbeek LS, Gorissen A, Smalla K, Elsas JD. 2003. Effect of compost addition and simulated solarisation on the fate of Ralstonia solanacearum biovar 2 and indigenous bacteria in soil. FEMS Microbiol Ecol. 43(1):63–74. doi: 10.1111/j.1574-6941.2003.tb01046.x.
  • Shakeel M, Rais A, Hassan MN, Hafeez FY. 2015. Root Associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Front Microbiol. 6:1286. doi: 10.3389/fmicb.2015.01286.
  • Shutt VM, Shin G, van der Waals JE, Goszczynska T, Coutinho TA. 2018. Characterization of Ralstonia strains infecting tomato plants in South Africa. Crop Prot. 112:56–62. doi: 10.1016/j.cropro.2018.05.013.
  • Stotzky G. 1997. Soil as an environment for microbial life. In: van Elsas JD, Trevors JT, Wellington EMH, editors. Modern soil microbiology. New York: Marcel Dekker; p. 1–20.
  • Su L, Zhang L, Nie D, Kuramae EE, Shen B, Shen Q. 2020. Bacterial tomato pathogen Ralstonia solanacearum invasion modulates rhizosphere compounds and facilitates the cascade effect of fungal pathogen Fusarium solani. Microorganisms. 8(6):806. doi: 10.3390/microorganisms8060806.
  • Sui X, Han X, Cao J, Li Y, Yuan Y, Gou J, Zheng Y, Meng C, Zhang C. 2022. Biocontrol potential of Bacillus velezensis EM-1 associated with suppressive rhizosphere soil microbes against tobacco bacterial wilt. Front Microbiol. 13:940156. doi: 10.3389/fmicb.2022.940156.
  • Sun Y, Wang M, Mur LAJ, Shen Q, Guo S. 2020. Unravelling the roles of nitrogen nutrition in plant disease defences. Int J Mol Sci. 1621(2):572. doi: 10.3390/ijms21020572.
  • Tang T, Sun X, Dong Y, Liu Q. 2019. Erythrobacter aureus sp. nov., a plant growthpromoting bacterium isolated from sediment in the Yellow Sea, China. 3 Biotech. 9(11):430. doi: 10.1007/s13205-019-1958-3.
  • Taheri E, Tarighi S, Taheri P. 2022. Characterization of root endophytic Paenibacillus polymyxa isolates with biocontrol activity against Xanthomonas translucens and Fusarium graminearum. Biolog Cont. 174:105031. doi: 10.1016/j.biocontrol.2022.105031.
  • Termorshuizen AJ, van Rijn E, van der Gaag DJ, Alabouvette C, Chen Y, Lagerlöf J, Malandrakis AA, Paplomatas EJ, Rämert B, Ryckeboer J, et al. 2006. Disease suppression of 18 composts against 7 pathogens. Soil Biol Biochem. 38(8):2461–2477. doi: 10.1016/j.soilbio.2006.03.002.
  • Tuitert G, Szczech M, Bollen GJ. 1998. Suppression of Rhizoctonia solani in potting mixtures amended with compost made from organic household waste. Phytopathol. 88(8):764–773. doi: 10.1094/PHYTO.1998.88.8.764.
  • Van Elsas JD, van Overbeek LS, Bailey MJ, Schönfeld J, Smalla K. 2005. Fate of Ralstonia solanacearum biovar 2 as affected by conditions and soil treatments in temperate climate zones. In: Allen C, Prior P, Hayward AC, editors. Bacterial wilt disease and the Ralstonia solanacearum species complex. Saint Paul (MN): The American Phytopathological Society; p. 39–49.
  • Van Veen JA, Van Overbeek LS, Van Elsas JD. 1997. Fate and activity of microorganisms following release into soil. Microbiol Mol Biol Rev. 61(2):121–135. doi: 10.1128/mmbr.61.2.121-135.1997.
  • Vasu D, Tiwari G, Sahoo S, Dash B, Jangir A, Sharma RP, Naitam R, Tiwary P, Karthikeyan K, Chandran P. 2021. A minimum data set of soil morphological properties for quantifying soil quality in coastal agroecosystems. Catena. 198:105042. doi: 10.1016/j.catena.2020.105042.
  • Vaughan D, Malcolm RE. 1985. Influence of humic substances on growth and physiological processes. In: Soil organic matter and biological activity. Dordrecht: Martinus Nijho¡ Publishers; p. 37–76. doi: 10.1007/978-94-009-5105-1_2.
  • VenKataraman GS. 1993. Blue-green algae (cyanobacteria). In: Tata SN, Wadhwani AM, Mehdi MS, editors. Biological nitrogen fixation. New Delhi: Indian Council of Agricultural Research; p. 45–76.
  • Wei Z, Hu J, Gu Y, Yin S, Xu Y, Jousset A, Shen Q, Friman VP. 2018. Ralstonia solanacearum pathogen disrupts bacterial rhizosphere microbiome during an invasion. Soil Biol Biochem. 118:8–17. doi: 10.1016/j.soilbio.2017.11.012.
  • Weller SA, Elphinstone JG, Smith NC, Boonham N, Stead DE. 2000. Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real-time, fluorogenic PCR (TaqMan) assay. Appl Environ Microbiol. 66(7):2853–2858. doi: 10.1128/AEM.66.7.2853-2858.2000.
  • Xie Y, Wright S, Shen Y, Du L. 2012. Bioactive natural products from Lysobacter. Nat Prod Rep. 29(11):1277–1287. doi: 10.1039/c2np20064c.
  • Yuliar, Nion YA, Toyota K. (2015) Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ 30(1):1–11. doi: 10.1264/jsme2.ME14144.
  • Zhang Z, Yuen GY, Sarath G, Penheiter AR. 2001. Chitinases from the plant disease biocontrol agent, Stenotrophomonas maltophilia C3. Phytopathol. 91(2):204–211. doi: 10.1094/PHYTO.2001.91.2.204.
  • Zhao W, Ban Y, Su Z, Li S, Liu X, Guo Q, Ma P. 2023. Colonization ability of Bacillus subtilis NCD-2 in different crops and its effect on rhizosphere microorganisms. Microorganisms. 11(3):776. doi: 10.3390/microorganisms11030776.
  • Zhao J, Zhang R, Xue C, Xun W, Sun L, Xu Y, Shen Q. 2014. Pyrosequencing reveals contrasting the soil bacterial diversity and community structure of two main winter wheat cropping systems in China. Microb Ecol. 67(2):443–453. doi: 10.1007/s00248-013-0322-0.
  • Zhao F, Zhang Y, Dong W, Zhang Y, Zhang G, Sun Z, Yang L. 2019. Vermicompost can suppress Fusarium oxysporum f. sp. lycopersici via generation of beneficial bacteria in a long-term tomato monoculture soil. Plant Soil. 440(1-2):491–505. doi: 10.1007/s11104-019-04104-y.
  • Zheng X, Zhu Y, Wang J, Wang Z, Liu B. 2019. Combined use of a microbial restoration substrate and avirulent Ralstonia solanacearum for the control of tomato bacterial wilt. Sci Rep. 9(1):20091. doi: 10.1038/s41598-019-56572-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.