248
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cyber risk modeling: a discrete multivariate count process approach

, &
Pages 625-655 | Received 01 Feb 2023, Accepted 26 Nov 2023, Published online: 02 Jan 2024

References

  • Aït-Sahalia Y., Laeven R. J. & Pelizzon L. (2014). Mutual excitation in Eurozone sovereign CDS. Journal of Econometrics 183(2), 151–167.
  • Bailey T., Del Miglio A. & Richter W. (2014). The rising strategic risks of cyberattacks. Technical report, McKinsey & Company.
  • Bessy-Roland Y., Boumezoued A. & Hillairet C. (2021). Multivariate Hawkes process for cyber insurance. Annals of Actuarial Science 15(1), 14–39.
  • Best A. M. (2019). Cyber insurance: profitability less certain as new risks emerge. Technical report, Best's Market Segment Report.
  • Biener C., Eling M. & Wirfs J. H. (2015). Insurability of cyber risk: an empirical analysis. Geneva Papers on Risk and Insurance-Issues and Practice 40(1), 131–158.
  • Böhme R. & Kataria G. (2006). Models and measures for correlation in cyber-insurance. NYU Stern Working paper.
  • Boudreault M. & Charpentier A. (2011). Multivariate integer-valued autoregressive models applied to earthquake counts. arXiv preprint arXiv:1112.0929.
  • Carr P., Geman H., Madan D. B. & Yor M. (2002). The fine structure of asset returns: an empirical investigation. Journal of Business 75(2), 305–333.
  • Carrasco M. & Florens J.-P. (2000). Generalization of GMM to a continuum of moment conditions. Econometric Theory 16(6), 797–834.
  • Catania L. & Di Mari R. (2021). Hierarchical Markov–Switching models for multivariate integer-valued time-series. Journal of Econometrics 221(1), 118–137.
  • Cebula J. L. & Young L. R. (2010). A taxonomy of operational cyber security risks. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.
  • Chavez-Demoulin V., Davison A. C. & McNeil A. J. (2005). Estimating value-at-risk: a point process approach. Quantitative Finance 5(2), 227–234.
  • Chavez-Demoulin V., Embrechts P. & Hofert M. (2016). An extreme value approach for modeling operational risk losses depending on covariates. Journal of Risk and Insurance 83(3), 735–776.
  • Christoph G. & Schreiber K. (1998). Discrete stable random variables. Statistics & Probability Letters37(3), 243–247.
  • Cummins J. D., Lewis C. M. & Wei R. (2006). The market value impact of operational loss events for US banks and insurers. Journal of Banking & Finance 30(10), 2605–2634.
  • Darolles S., Gourieroux C. & Jasiak J. (2006). Structural Laplace transform and compound autoregressive models. Journal of Time Series Analysis 27(4), 477–503.
  • Darolles S., Le Fol G., Lu Y. & Sun R. (2019). Bivariate integer-autoregressive process with an application to mutual fund flows. Journal of Multivariate Analysis 173, 181–203.
  • Davis R. A., Fokianos K., Holan S. H., Joe H., Livsey J., Lund R., Pipiras V. & Ravishanker N. (2021). Count time series: a methodological review. Journal of the American Statistical Association 116(535), 1533–1547.
  • Denuit M. & Lu Y. (2021). Wishart-gamma random effects models with applications to nonlife insurance. Journal of Risk and Insurance 88(2), 443–481.
  • Edwards B., Hofmeyr S. & Forrest S. (2016). Hype and heavy tails: a closer look at data breaches. Journal of Cybersecurity 2(1), 3–14.
  • El-Shaarawi A. H., Zhu R. & Joe H. (2011). Modelling species abundance using the Poisson–Tweedie family. Environmetrics 22(2), 152–164.
  • Eling M. & Jung K. (2018). Copula approaches for modeling cross-sectional dependence of data breach losses. Insurance: Mathematics and Economics 82, 167–180.
  • Eling M. & Loperfido N. (2017). Data breaches: goodness of fit, pricing, and risk measurement. Insurance: Mathematics and Economics 75, 126–136.
  • Eling M. & Schnell W. (2020). Capital requirements for cyber risk and cyber risk insurance: an analysis of solvency II, the US risk-based capital standards, and the Swiss Solvency test. North American Actuarial Journal 24(3), 370–392.
  • Eling M. & Wirfs J. (2019). What are the actual costs of cyber risk events? European Journal of Operational Research 272(3), 1109–1119.
  • Embrechts P., Liniger T. & Lin L. (2011). Multivariate Hawkes processes: an application to financial data. Journal of Applied Probability 48(A), 367–378.
  • Fahrenwaldt M. A., Weber S. & Weske K. (2018). Pricing of cyber insurance contracts in a network model. ASTIN Bulletin 48(3), 1175–1218.
  • Falco G., Eling M., Jablanski D., Weber M., Miller V., Gordon L. A., Wang S. S., Schmit J., Thomas R. & Elvedi M., et al. (2019). Cyber risk research impeded by disciplinary barriers. Science 366(6469), 1066–1069.
  • Farkas S., Lopez O. & Thomas M. (2021). Cyber claim analysis using generalized Pareto regression trees with applications to insurance. Insurance: Mathematics and Economics 98, 92–105.
  • FitchRatings, (2021). Sharply rising cyber insurance claims signal further risk challenges.
  • Fokianos K., Støve B., Tjøstheim D. & Doukhan P. (2020). Multivariate count autoregression. Bernoulli26(1), 471–499.
  • Furman E., Hackmann D. & Kuznetsov A. (2020). On log-normal convolutions: an analytical–numerical method with applications to economic capital determination. Insurance: Mathematics and Economics90, 120–134.
  • Gartner, (2021). Gartner forecasts worldwide security and risk management spending to exceed $150 billion in 2021. Gartner Press Release
  • Gatzert N. & Kolb A. (2014). Risk measurement and management of operational risk in insurance companies from an enterprise perspective. Journal of Risk and Insurance 81(3), 683–708.
  • Genest C. & Nešlehová J. (2007). A primer on copulas for count data. ASTIN Bulletin 37(2), 475–515.
  • The Geneva Association, (2016). Ten key questions on cyber risk and cyber risk insurance. Technical report, The Geneva Association, Zurich.
  • Gouriéroux C. & Lu Y. (2019). Negative binomial autoregressive process with stochastic intensity. Journal of Time Series Analysis 40(2), 225–247.
  • Gourieroux C., Monfort A. & Polimenis V. (2006). Affine models for credit risk analysis. Journal of Financial Econometrics 4(3), 494–530.
  • Hall A. R. (2005). Generalized method of moments. Oxford: Oxford University Press.
  • Hansen L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica50(4), 1029–1054.
  • Heinen A. & Rengifo E. (2007). Multivariate autoregressive modeling of time series count data using copulas. Journal of Empirical Finance 14(4), 564–583.
  • Hillairet C. & Lopez O. (2021). Propagation of cyber incidents in an insurance portfolio: counting processes combined with compartmental epidemiological models. Scandinavian Actuarial Journal2021(8), 671–694.
  • Hougaard P. (1986). Survival models for heterogeneous populations derived from stable distributions. Biometrika 73(2), 387–396.
  • IBM, (2020). Cost of a data breach report. Technical report, IBM Security.
  • Jacobs J. (2014). Analyzing ponemon cost of data breach. Data Driven Security 11, 5.
  • Jevtić P. & Lanchier N. (2020). Dynamic structural percolation model of loss distribution for cyber risk of small and medium-sized enterprises for tree-based lan topology. Insurance: Mathematics and Economics 91, 209–223.
  • Jørgensen B. (1987). Exponential dispersion models. Journal of the Royal Statistical Society: Series B (Methodological) 49(2), 127–145.
  • Jørgensen B., Lundbye-Christensen S., Song P.-K. & Sun L. (1999). A state space model for multivariate longitudinal count data. Biometrika 86(1), 169–181.
  • Jung K. (2021). Extreme data breach losses: an alternative approach to estimating probable maximum loss for data breach risk. North American Actuarial Journal 25(4), 580–603.
  • Jung R. C., Liesenfeld R. & Richard J. -F. (2011). Dynamic factor models for multivariate count data: an application to stock-market trading activity. Journal of Business & Economic Statistics 29(1), 73–85.
  • Kendall M. G. (1975). Rank correlation methods. 4th ed., London: Charles Griffin.
  • Kim E., Gardner D., Deshpande S., Contu R., Kish D. & Canales C. (2018). Forecast analysis: information security, worldwide, 2Q18 update. Gartner Research 0, 0–0.
  • Livsey J., Lund R., Kechagias S. & Pipiras V. (2018). Multivariate integer-valued time series with flexible autocovariances and their application to major hurricane counts. Annals of Applied Statistics 12(1), 408–431.
  • Lu Y. (2018). Dynamic frailty count process in insurance: a unified framework for estimation, pricing, and forecasting. Journal of Risk and Insurance 85(4), 1083–1102.
  • Lu Y. (2021). The predictive distributions of thinning-based count processes. Scandinavian Journal of Statistics 48(1), 42–67.
  • Maillart T. & Sornette D. (2010). Heavy-tailed distribution of cyber-risks. European Physical Journal B 75(3), 357–364.
  • Mann H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society13(3), 245–259.
  • Mátyás L. (1999). Generalized method of moments estimation. Cambridge: Cambridge University Press.
  • Nguyen Q. H. & Robert C. Y. (2015). Series expansions for convolutions of pareto distributions. Statistics & Risk Modeling 32(1), 49–72.
  • OECD, (2017). Enhancing the role of insurance in cyber risk management. Technical report, OECD Publishing, Paris.
  • OECD, (2019). Insurance business written in the reporting country. OECD Insurance Statistics (database).
  • Pedeli X. & Karlis D. (2013). On composite likelihood estimation of a multivariate INAR (1) model. Journal of Time Series Analysis 34(2), 206–220.
  • Peng C., Xu M., Xu S. & Hu T. (2017). Modeling and predicting extreme cyber attack rates via marked point processes. Journal of Applied Statistics 44(14), 2534–2563.
  • Peng C., Xu M., Xu S. & Hu T. (2018). Modeling multivariate cybersecurity risks. Journal of Applied Statistics 45(15), 2718–2740.
  • RMS-CCRS, (2016). Managing cyber insurance accumulation risk. Technical report, Risk Management Solutions, Inc. and Cambridge Centre for Risk Studies, Cambridge University.
  • Steutel F. W. & van Harn K. (1979). Discrete analogues of self-decomposability and stability. Annals of Probability 7(5), 893–899.
  • Sun H., Xu M. & Zhao P. (2020). Modeling malicious hacking data breach risks. forthcoming, North American Actuarial Journal, P. 1–19.
  • SwissRe, (2017). Cyber: getting to grips with a complex risk. Sigma 1(1), 1–38.
  • Tanoue Y., Kawada A. & Yamashita S. (2017). Forecasting loss given default of bank loans with multi-stage model. International Journal of Forecasting 33(2), 513–522.
  • Trivedi P. & Zimmer D. (2017). A note on identification of bivariate copulas for discrete count data. Econometrics 5(1), 10.
  • Wang L., Akritas M. G. & Van Keilegom I. (2008). An anova-type nonparametric diagnostic test for heteroscedastic regression models. Journal of Nonparametric Statistics 20(5), 365–382.
  • Wang S. & Panjer H. (1993). Critical starting points for stable evaluation of mixed poisson probabilities. Insurance: Mathematics and Economics 13(3), 287–297.
  • Wheatley S., Hofmann A. & Sornette D. (2021). Addressing insurance of data breach cyber risks in the catastrophe framework. Geneva Papers on Risk and Insurance-Issues and Practice 46(1), 53–78.
  • Wheatley S., Maillart T. & Sornette D. (2016). The extreme risk of personal data breaches and the erosion of privacy. European Physical Journal B 89(1), 1–12.
  • Willmot G. E. (1987). The poisson-inverse Gaussian distribution as an alternative to the negative binomial. Scandinavian Actuarial Journal 1987(3-4), 113–127.
  • Xu M. & Hua L. (2019). Cybersecurity insurance: modeling and pricing. North American Actuarial Journal 23(2), 220–249.
  • Xu M., Hua L. & Xu S. (2017). A vine copula model for predicting the effectiveness of cyber defense early-warning. Technometrics 59(4), 508–520.
  • Xu M. & Zhang Y. (2021). Data breach CAT bonds: modeling and pricing. North American Actuarial Journal 25(4), 543–561.
  • Zhu R. & Joe H. (2009). Modelling heavy-tailed count data using a generalised poisson-inverse Gaussian family. Statistics & Probability Letters 79(15), 1695–1703.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.