Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 49, 2014 - Issue 10
135
Views
5
CrossRef citations to date
0
Altmetric
ARTICLES

Simultaneous voltammetric determination of four triazine herbicides in water samples with the aid of chemometrics

, &
Pages 722-729 | Received 24 Feb 2014, Published online: 28 Jul 2014

References

  • Maclennan, P.A.; Delzell, E.; Sathiakumar, N.; Myers, S.L. Mortality among triazine herbicide manufacturing workers. J. Toxicol. Envir. Health A 2003, 66, 501–517.
  • Environmental Working Group. Into the mouths of babes: Government underestimates infant exposure to toxic weed killer. News Center, July 2, 2000. (http://www.commondreams.org/pressreleases/july99/072899d.htm).
  • World Health Organization (WHO). Atrazine and its metabolites in drinking-water: Background document for development of WHO guidelines for drinking-water quality. WHO Press: Switzerland, 2011. (http://www.who.int/water_sanitation_health/dwq/chemicals/antrazine.pdf)
  • Hidalgo, C.; Sancho, J.V.; Hernandez, F. Trace determination of triazine herbicides by means of coupled-column liquid chromatography and large volume injection. Anal. Chem. Acta 1997, 338, 223–229.
  • Vidal, J.L.M.; Frenich, A.G. Pesticide Protocols. Humana Press: Totowa, NJ, 2006.
  • Yassir, A.; Lagacherie, B.; Houot, S.; Soulas, G. Microbial aspects of atrazine biodegradation in relation to history of soil treatment. Pesticide Sci. 1999, 55, 799–809.
  • Wang, J. Analytical Electrochemistry, 3rd Ed.; Wiley: New York, 2006.
  • Vaz, C.M.P.; Crestana, S.; Machado, S.A.S.; Mazo, L.H.; Avaca, L.A. Electroanalytical determination of the herbicide atrazine in natural waters. Int. J. Environ. Anal. Chem. 1996, 62, 65–76.
  • de Souza, D.; de Toledo, R.A.; Suffrdini, H.B.; Mazo, L.H.; Machado, S.A.S. Chacterizaion and use of copper solid amalgam electrode for electroanalytical determination of triazines-based herbicides. Electroanalysis 2006, 18, 605–612.
  • de Souza, D.; Machado, S.A.S. Electrochemical detection of the herbicide paraquat in natural water and citric fruit juice using microelectrodes. Anal. Chim. Acta. 2006, 546, 85–91.
  • de Souza, D.; Machao, S.A.S. Study of the electrochemical behavior and sensitive detection of pesticides using microelectrodes allies to square-wave voltammetry. Electroanalysis 2006, 18, 862–872.
  • Skopalova, J.; Kotoucek, M. Polarographic behaviour of some s-triazine herbicides and their determination by adsorptive stripping voltammetry at the hanging mercury drop electrode. Fresenius’ J. Anal. Chem. 1995, 351, 650–655.
  • Ni, Y.N.; Kokot, S. Does chemometrics enhance the performance of electroanalysis? Anal. Chim. Acta. 2008, 626, 130–146.
  • Richards, E.; Bessant, C.; Saini, S. Multivariate data analysis in electroanalytical chemistry. Electroanalysis 2002, 14, 1533–1542.
  • Esteban, M.; Arino, C.; Diaz-Cruz, J.M. Chemometrics for the analysis of voltammetric data. TrAC Trends Anal. Chem. 2006, 25, 86–92.
  • Esteban, M.; Arino, C.; Diaz-Cruz, J.M. Chemometrics in electroanalytical chemistry. Crit. Rev. Anal. Chem. 2006, 36, 295–313.
  • Despagne, F.; Massart, D.L. Tutorial review: neural networks in multivariate calibration. Analyst 1998, 123, 157R–178R.
  • Marini, F. Artificial neural neural networks in foodstuff analysis: trends and perspectives, a review. Anal. Chim. Acta. 2009, 635, 121–131.
  • Blank, T.B.; Brown, S.D. Data processing using neural networks. Anal. Chim. Acta 1993, 277, 273–287.
  • Ni, Y.N.; Qiu, P.; Kokot, S. Simultaneous determination of three organophosphorus pesticides by differential pulse stripping voltammetry and chemometrics. Anal. Chim. Acta. 2004, 516, 7–17.
  • Ni, Y.N.; Qiu, P.; Kokot, S. Simultaneous voltammetric determination of four carbamate pesticides with the use of chemometrics. Anal. Chim. Acta. 2005, 537, 321–330.
  • Ventura, S.; Silva, M.; Perez-Bendito, D.; Hervas, C. Artificial neural networks for estimation of kinetic analytical parameters. Anal. Chem. 1995, 67, 1521–1525.
  • Ventura, S.; Silva, M.; Perez-Bendito, D.; Hervas, C. Multicomponent kinetic determinations using artificial neural networks. Anal. Chem. 1995, 67, 4458–4461.
  • Sekulic, S.; Seasholtz, M.B.; Wang, Z.; Kowalski, B.R.; Lee, S.E.; Holt, B.R. Nonlinear multivariate calibration methods in analytical. Anal. Chem. 1993, 65, A835–A845.
  • Higuera, M.J.; Ruiz Montoya, M.; Marin Galvin, R.; Rodriguez Mellado, J.M. A contribution to the study of the electroreduction of 2-chloro-4,6-di(ethylamino)-1,3,5-triazine (simazine) on mercury electrodes. J. Electroanal. Chem. 1999, 474, 174–181.
  • Pospisil, L.; Trskova, R.; Fuoco, R.; Colombini, M.P. Electrochemistry of s-triazine herbicides: reduction of atrazine and terbutylazine in aqueous solutions. J. Electroanal. Chem. 1995, 395, 189–193.
  • Dombek, T.; Davis, D.; Stine, J.; Klarup, D. Degradation of terbutylazine (2-chloro-4-ethylamino-6-terbutylamino-1,3,5-triazine), deisopropyl atrazine (2-amino-4-chloro-6-ethylamino-1,3,5-triazine), and chlorinated dimethoxy triazine (2-chloro-4,6-dimethoxy-1,2,3-triazine) by zero valent iron and electrochemical reduction. Environ. Poll. 2004, 129, 267–275.
  • Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 4th Ed.; Pearson Education Limited: London, 2000.
  • Ni, Y.N.; Gui, Y.; Kokot, S. Application of multiway-variate calibration to simultaneous voltammetric determination of three catecholamines. Anal. Methods 2011, 3, 385–392.
  • Qiu, P.; Ni, Y.N.; Kokot, S. Application of artificial neural networks to the determination of pesticides by linear sweep stripping voltammetry. Chin. Chem. Lett. 2013, 24, 246–248.
  • Ni, Y.N.; Wang, L.; Kokot, S. Simultaneous determination of three herbicides by differential pulse voltammetry and chemometrics. J. Environ. Sci. Health, Part B 2011, 46, 328–335.
  • Tetko, I.V.; Luik, A.I.; Poda, G.I. Applications of neural networks in structure activity relatiobships of a small number of molecules. J. Med. Chem. 1993, 36, 811–814.
  • Ni, Y.N. Application of Chemometrics in Analytical Chemistry. Chinese Science Press: Beijing, 2005.
  • David, V.; Sanchez, A. Searching for a solution to the automatic RBF network design problem. Neurocomputing 2002, 42, 147–170.
  • Lan, W.G.; Wong, M.K.; Chen, N.; Sin, Y.M. Orthogonal array design as a chemometric method for the optimization of analytical procedures. Part 2. Four-level design and its application in microwave dissolution of biological samples. Analyst 1994, 119, 1669–1675.
  • Stone, M. Cross validatory choice and assessment of statistical predictions. J. Roy. Statist. Soc. A 1974, 36, 111–147.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.