Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 49, 2014 - Issue 12
137
Views
3
CrossRef citations to date
0
Altmetric
ARTICLES

Metabolism of n-C10:0 and n-C11:0 fatty acids by Trichoderma koningii, Penicillium janthinellum and their mixed culture: I. Biomass and CO2 production, and allocation of intracellular lipids

, , , , &
Pages 945-954 | Received 23 May 2014, Published online: 13 Oct 2014

References

  • Lee, S.K.; Chou, H.; Ham, T.S.; Lee, T.S.; Keasling, J.D. Metabolic engineering of microorganisms for biofuels production: From bugs to synthetic biology to fuels. Curr. Opin. Biotech. 2008, 19, 556–563.
  • Templier, J.; Largeau, C.; Casadevall, E. Non-specific elongation-decarboxylation in biosynthesis of cis and trans alkadienes by Botryococcus braunii. Phytochemistry. 1991, 30, 175–183.
  • Monreal, C.M.; Schnitzer, M. Production of a refined biooil derived by fast pyrolysis of chicken manure with chemical and physical characteristics close to those of fossil fuels. J. Environ. Sci. Health, Part B. 2011, 46, 630–637.
  • Schnitzer, M.; Monreal, C.M. Wheat straw biomass: A resource for high value chemicals. J. Environ. Sci. Health, Part B. 2013, 49, 51–67.
  • Domingues, F.C.; Queiroz, J.A.; Cabral, J.M.S.; Fonseca, L.P. The influence of culture conditions on mycelia structure and cellulose production by Trichoderma reesei Rut C-30. Enz. Microb. Techn. 2000, 26, 394–401.
  • Rodrigues, B.C.R.; Brochetto-Braga, M.J.; Tauk-Tornisielo, S.M.; Carmona, E.C.; Arruda, V.M.; Netto, J.C. Comparative growth of trichoderma strains in different nutritional sources, using bioscreen automated system. Braz. J. Microb. 2009, 40, 404–410.
  • Ladygina, N.; Dedyukhina, E.G.; Vainshtein, M.B. A review on microbial synthesis of hydrocarbons. Process Biochem. 2006, 41, 1001–1014.
  • Christi, Y. Biodiesel from microalgae beats bioethanol. Trends Biotech. 2008, 26, 126–131.
  • Borjesson, T.; Stollman, U.; Schnurer, J. Volatile metabolites and other indicators of Penicillium aurantiogriseum growth on different substrates. Appl. Environ. Microb. 1990, 56, 3705–3710.
  • Radwan, S.S.; Soliman, A.H. Arachidonic acid from fungi utilizing fatty acids with shorter chains as sole sources of carbon and energy. J. Gen. Microb. 1988, 134, 387–393.
  • Jeffries, T.W. Effects of culture conditions on the fermentation of xylose to ethanol by Candida shehatae. In Proceedings of 7th Symposium on Biotechnology for Fuels and Chemicals. Biotechnology and bioengineering symposium no. 15. Wiley: New York, 1985; 149–166.
  • Beardmore, J.; Pegg, G.F. A technique for the establishment of mycorrhizal infection in orchid tissue grown in aseptic culture. New Phytol. 1981, 87, 527–535.
  • Stotzky, G. Microbial respiration in methods of soil analysis: Part 2, Chemical and microbiological properties. Am. Soc. Ag-Bodenk. 1965, 56, 26–38.
  • Kimura, K.; Yamaoka, M.; Kamisaka, Y. Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. J. Microb. Meth. 2004, 56, 331–338.
  • Zar, J. H. Biostatistical Analysis. Prentice Hall: Upper Saddle River, NJ, 1999; 564 pp.
  • Gessner, M.O.; Newell, S.Y. Biomass, growth rate and production of filamentous fungi in plant litter. Man. Environ. Microb. 2002, 2, 390–408.
  • Montgomery H.J.; Monreal, C.M.; Young, J.C.; Seifert, K.A. Determination of soil fungal biomass from soil ergosterol analysis. Soil Biol. Biochem. 2000, 32, 1207–1217.
  • Haney, R.I.; Brinton, W.H.; Evans, E. Estimating soil carbon, nitrogen, and phosphorous mineralization from short term carbon dioxide respiration. Comm. Soil Sci. Plant Anal. 2008, 39, 2706–2720.
  • Ochoa, S. Biological mechanisms of carboxylation and decarboxylation. Phys. Rev. 1951, 31, 56–106.
  • Strobel, G.A.; Knighton, B.; Kluck, K.; Ren, Y.; Livinghouse, T.; Griffin, M.; Spakowicz, D.; Sears, J. The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus gliocladium roseum. Microbiology. 2008, 154, 3319–3328.
  • Miyanaga, A.; Funa, N.; Awakawa, T.; Horinouchi, S. Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis. Proc. Natl. Acad. Sci. USA. 2008, 105, 871–876.
  • Park, M.O. New pathway for long-chain n-alkane synthesis via 1-alcohol in Vibrio furnissii M1. J. Bact. 2005, 187, 1426–1429.
  • Musallam, A.A.; Radwan, S.S. Wool-colonizing micro-organisms capable of utilizing wool-lipids and fatty acids as sole sources of carbon and energy. J. Appl. Bact. 1990, 69, 806–813.
  • Bago, B.; Zipfel, W.; Williams, R.W.; Jun, J.; Arreola, R.; Lammers, P.J.; Pfeffer, P.E.; Hill, Y.S. Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Phys. 2002, 128, 108–124.
  • Brenner, K.; You, L.; Arnold, F.H. Engineering microbial consortia: A new frontier in synthetic biology. Trends Biotech. 2008, 26, 483–489.
  • Aislable, J.; David, J.; Saul, A.E.; Foght, J.M. Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles, 2006, 10, 171–179.
  • Greenspan, P.; Mayer, E.P.; Fowler, S.D. Nile red: A selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 1985, 100, 965–973.
  • Murphy, D.J.; Vance, J. Mechanisms of lipid-body formation. Trends Biochem. Sci. 1999, 24, 109–115.
  • Murphy, D.J. Storage lipid bodies in plants and other organisms. Prog. Lipid Res. 1991, 29, 299–324.
  • Kamisaka, Y.; Noda, N. Intracellular transport of phosphatidic acid and phosphatidylcholine into lipid bodies in an oleaginous fungus, Mortierella ramanniana var. an- gulispora. J. Biochem. 2001, 129, 19–26.
  • Hamanaka, T.; Higashiyama, K.; Fujikawa, S.; Park, E.Y. Mycelial pellet intrastructure and visualization of mycelia and intracellular lipid in a culture of Mortierella alpina. Appl. Microb. Biotech. 2001, 56, 233–238.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.