Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 51, 2016 - Issue 5
494
Views
31
CrossRef citations to date
0
Altmetric
ARTICLES

Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions

, &
Pages 298-308 | Received 25 Aug 2015, Published online: 01 Feb 2016

References

  • Tortella, G.R.; Mella-Herrera, R.A.; Sousa, D.Z.; Rubilar, O.; Acuña, J.J.; Briceño, G.; Diez, M.C. Atrazine dissipation and its impact on the microbial communities and community level physiological profiles in a microcosm simulating the biomixture of on-farm biopurification system. J. Hazard Mater. 2013, 260(1), 459-467.
  • Hansen, A.M.; Treviño-Quintanilla, L.G.; Márquez-Pacheco, H.; Villada-Canela, M.; González-Márquez, L.C.; Guillen-Garcés, R.A.; Hernández-Antonio, A. Atrazina: un herbicida polémico. Rev. Int. Contam. Ambie. 2013, 29(1), 65-84.
  • Islas-Pelcastre, M.; Villagómez, I.J.R.; Madariaga, N.A.; Castro, R.J.; González, R.C.A.; Acevedo, S.A.A. Bioremediation perspectives using autochthonous species of Trichoderma sp. for degradation of atrazine in agricultural soil from the Tulancingo Valley, Hidalgo, Mexico. Tropical and Subtropical Agroecosystems 2013, 16(2), 265-276.
  • Accinelli, C.; Dinelli, G.; Vicari, A.; Catiozone, P. Atrazine and metolachlor degradation in subsoils. Biol. Fert. Soils 2001, 33(6), 495-500.
  • Baghapour, M.A.; Nasseri, S.; Derakhshan, Z. Atrazine degradation from aqueous solutions using submerged biological aerated filter. Iranian J Environ. Health Sci. Eng. 2013, 11(6), 1-9.
  • Dewey, K.A.; Gaw, S.K.; Northcott, G.L.; Lauren, D.R.; Hackenburg, S. The effects of copper on microbial activity and the degradation of atrazine and indoxacarb in a New Zealand soil. Soil Biol. Biochem. 2012, 52(1), 64-74.
  • Mahía, J.; Martín, A.; Carballas, T.; Díaz-Raviña, M. Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems. Sci. Total Environ. 2007, 378(1–2), 187-194.
  • Mudhoo, A.; Garg, V.K. Sorption, transport and transformation of atrazine in soils, minerals and composts: A review. Pedosphere 2011, 2(1), 11-25.
  • Kumar, G.P.; Philip, L.; Bandyopadhyay, M. Management of atrazine bearing wastewater using an upflow anaerobic sludge blanket reactor–adsorption system. Pract. Period. Hazard. Toxic, Radioact. Waste Manag. 2005, 9(2), 112-121.
  • Farré, M.; Martínez, E.; Ramon, J.; Navarro, A.; Radjenovic, J.; Mauriz, E.; Lechuga, L.; Marco. M.P.; Barcelo, D. Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor. Anal. Bioanal. Chem. 2007, 388(1), 207-214.
  • EPA. Decision documents for atrazine. Available at http://www.epa.gov/oppsrrd1/reregistration/REDs/atrazine_combined_docs.pdf/ (accessed May 2014).
  • Joo, H.; Choi, K.; Hodgson, E. Human metabolism of atrazine. Pestic. Biochem. Physiol. 2010, 98(1), 73-79.
  • Hayes, T. More feedback on whether atrazine is a potent endocrine disruptor chemical. Environ. Sci. Technol. 2009, 43(16): 6115.
  • Rohr, J.R.; McCoy, K.A. A qualitative meta-analysis reveals consistent effects of atrazine on freshwater fish and amphibians. Environ. Health Persp. 2010, 118(1): 20-32.
  • Mitchkash, G.M.; McPeek, T.; Boone, M.D. The effects of 24-h exposure to carbaryl or atrazine on the locomotor performance and overwinter growth and survival of juvenile spotted salamanders (Ambystoma maculatum). Environ. Toxicol. Chem. 2014, 33(3), 548-552.
  • Solomon, K.R.; Giesy, J.P.; Lapoint, T.W.; Giddings, J.M.; Richards, P. Ecological risk assessment of atrazine in North American surface waters. Environ. Toxicol. Chem. 2013, 32(1), 10-11.
  • Ralebitso, S.T.K.; Senior, E.; Van-Verseveld, H.W. Microbial aspects of atrazine degradation in natural environments. Biodegradation 2002, 13(1), 11-19.
  • Magan, N.; Fragoeiro, S.; Bastos, C. Environmental factors and bioremediation of xenobiotics using white rot fungi. Microbiology 2010, 38(4), 238-248.
  • Przybulewska, K.; Sienicka, K. Decomposition of atrazine by microorganism isolated from long-term herbicide experiment soil. Ecol. Chem. Eng. 2008, 15(4), 491-499.
  • Sene, L.; Converti, A.; Ribeiro-Secchi, G.A.; Garcia S.R. New aspects on atrazine biodegradation. Braz. Arch. Biol. Technol. 2010, 53(2), 487-496.
  • Arroyo-Figueroa, G.; Ruiz-Aguilar, G.; López-Martínez, L.; González-Sánchez, G.; Cuevas-Rodríguez, G.; Rodríguez-Vázquez, R. Treatment of a textile effluent from dyeing with cochineal extracts using Trametes versicolor fungus. Scientific World J. 2011, 11(1), 1005-1016.
  • Gayosso-Canales, M.; Rodríguez-Vázquez, R.; Esparza-García, F.J.; Bermúdez-Cruz, R.M. PCBs stimulate laccase production and activity in Pleurotus ostreatus thus promoting their degradation. Folia Microbiol. 2012, 57(2), 149-158.
  • Benoit, P.; Barriuso, E.; Calvet, R. Biosorption characterization of herbicides, 2,4-D and atrazine and two chlorophenols on fungal mycelium. Chemosphere 1998, 37(7), 1271-1282.
  • Singh, S.B.; Lal, P.S.; Pant, S.; Kulshrestha, G. Degradation of atrazine by an acclimatized soil fungal isolate. J. Environ. Sci. Health Part B 2008, 43(1), 27-33.
  • Romero, M.C.; Urrutia, M.I.; Reinoso, H.E.; Vedova, R.D.; Reynaldi, J.F. Atrazine degradation by wild filamentous fungi. Glo. Res. J. Micro. 2014, 4(1), 10-16.
  • Huang, H.; Zhang, S.; Chen, B.D.; Bao-Dong, C.; Yong-Guan, Z.; Nigel, J.B. Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil. Environ. Pollut. 2007, 146(2), 452-457.
  • Huang, H.; Zhang, S.; Wu, N.; Luo, L.; Christie, P. Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure. Soil Biol. Biochem. 2009, 41(4), 726-734.
  • Fragoeiro, S.; Magan, M. Impact of Trametes versicolor and Phanerochaete chrysosporium on differential breakdown of pesticide mixtures in soil microcosms at two water potentials and associated respiration and enzyme activity. Int. Biodet. Biodeg. 2008, 62(4), 376-383.
  • Bastos, A.C.; Magan, M. Trametes versicolor: Potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int. Biodet. Biodeg. 2009, 63(4), 389-394.
  • Canet, R.; Birnstingl, J.G.; Malcolm, D.G.; Lopez-Real, J.M.; Beck, A.J. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Bioresour. Technol. 2001, 76(2), 113-117.
  • Chirnside, A.E.M.; Ritter, W.F.; Radosevich, M. Biodegradation of aged residues of atrazine and alachlor in a mix-load site soil by fungal enzymes. Appl. Environ. Soil Sci. 2011, 2011, 1-10, Article ID 658569, pp. 10, doi:10.1155/2011/658569.
  • Masaphy, S.; Henis, Y.; Levanon, D. Manganese-enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonarius and its correlation with oxidation activity. Appl. Environ. Microbiol. 1996, 62(10), 3587-3593.
  • Singleton, I.; Mathew, Z. Fungal remediation of soils contaminated with persistent organic pollutants. In Fungi in Bioremediation; Gadd, G.M. Ed.; British Mycological Society Symposium Series; Cambridge University Press: Cambridge, UK, 2001; 79-96.
  • Pereira, P.M.; Sobral-Teixeira, R.S.; Leal-De Oliveira, M.A.; Da Silva, M.; Ferreira-Leitao, V.S. Optimized atrazine degradation by Pleurotus ostreatus INCQS 40310: An alternative for impact reduction of herbicides used in sugarcane crops. J. Microb. Biochem. Technol. 2013, doi: 10.4172/1948–5948.S12-006.
  • Stepanova, E.V.; Koroleva, O.V.; Vasilchenko, L.G.; Karapetian, K.N.; Landesman, E.O.; Lavmetdinov, I.S.; Kozlov, L.P.; Rabinovich, M.L. Fungal decomposition of oat straw during liquid and solid state fermentation. Appl. Environ. Microbiol. 2003, 39(1), 74-84.
  • Shahan, T.A.; Sorenson, W.G.; Simpson, J.; Kefalides, N.A.; Lewis, D.M. Tyrosine kinase activation in response to fungal spores is primarily dependent on endogenous reactive oxygen production in macrophages. J. Biol. Chem. 2000, 275(14), 10175-10181.
  • Gao, D.; Zeng, Y.; Wen, X.; Qian, Y. Competition strategies for the incubation of white rot fungi under non-sterile conditions. Process Biochem. 2008, 43(9), 937-944.
  • Izcapa-Treviño, C., Loera, O.; Tomasini, C.A.; Esparza, G.F.; Salazar, M.J.A.; Díaz, C.M.D.; Rodríguez, V.R. Fenton (H2O2/Fe) reaction involved in Penicillium sp. cultures for DDT [1,1,1,-trichloro-2–2-bis(p-chlorophenyl)-ethane] degradation. J. Environ. Sci. Health Part B 2009, 44(8), 798-804.
  • Mackul'ak, T.; Prousek, J.; Svorc, L. Degradation of atrazine by Fenton and modified Fenton reactions. Monatsh. Chem. 2011, 142(6), 561-567.
  • Bader, J.; Mast-Gerlach, E.; Papovic, M.K.; Bajpai, R.; Stahl, U. Relevance of microbial coculture fermentation in biotechnology. J. Appl. Microbiol. 2010, 109(2), 371-387.
  • Dwivedi, P.; Vivekanand, V.; Pareek, N.; Sharma, A.; Singh, R.P. Co-cultivation of mutant Penicillium oxalicum SAUE-3.510 and Pleurotus ostreatus for simultaneous biosynthesis of xylanase and laccase under solid-state fermentation. New Biotechnol. 2011, 28(6), 616-626.
  • Chan-Cupul, W.; Heredia, A.G.; Martinez-Carrera, D.; Rodríguez-Vázquez, R. Enhancement of ligninolytic enzyme activities in a Trametes maxima-Paecilomyces carneus co-culture: Key factors revealed after screening using a Plackett-Burman experimental design. Electronic J. Biotechnol. 2014, 17(3), 114-121.
  • Chaparro, D.F.; Rosas, D.C.; Varela, A. Aislamiento y evaluación de la actividad enzimática de hongos descomponedores de madera (Quindío, Colombia). Rev. Iberoam. Micol. 2009, 26(4), 238-243.
  • Heredia, A.G.; Arias, M.R. Hongos saprobios y endomicorrizógenos en suelo. In Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Manson, R.H.; Hernández, V.O.; Gallina, S.; Mehltreter, K. Eds.; Institute of Ecology A. C. (INECOL A. C.) and National Institute of Ecology (INE-SEMARNAT), Veracruz, México, 2008; 193-213.
  • Sivakumar, R.; Rajedran, R.; Balakumar, C.; Tamilvendan, M. Isolation, screening and optimization of production medium for thermostable laccase production from Ganoderma sp. Int. J. Eng. Sci. Tech. 2010, 2(12), 7133-7141.
  • Sunil, S.M.; Renuka, P.S.; Pruthvi, K.; Swetha, M.; Malini, S.; Veena, S.M. Isolation, purification, and characterization of fugal laccase from Pleurotus sp. Enzyme Res. 2011, 2011, 1-7, Article ID 248735, doi:10.4061/2011/248735.
  • Grinhut, T.; Salame, T.M.; Chen, Y.; Hadar, Y. Involvement of the ligninolytic enzymes and Fenton like reaction during humic acid degradation by Trametes sp. M23. Appl. Microbiol. Biotechnol. 2011, 91(4), 1131-1140.
  • Klassen, N.V.; Marchington, D.; Mcgowan, H.C.E. H2O2 determination by the I3-method and by KMnO4 titration. Anal. Chem. 1994, 66(18), 2921-2925.
  • Abdelhafid, R.; Houot, S.; Barriuso, E. Dependence of atrazine degradation on C and N availability in adapted and non-adapted soils. Soil Biol. Biochem. 2000, 32(3), 389-401.
  • Fernández, T.F.; Parra, L.C.; Calatrava, R.J. A methodological proposal for life cycle inventory of fertilization in energy crops: The case of Argentinean soybean and Spanish rapeseed. Biomass Bioenerg. 2013, 58(1), 104-116.
  • Ngigi, N.A.; Getenga, Z.M.; Hamadi, I.B.; Ndalut, P.K. Biodegradation of s-triazine herbicide atrazine by Enterobacter cloacae and Burkholderia cepacia sp. from long-term treated sugarcane-cultivated soils in Kenya. J. Environ. Sci. Health Part B. 2012, 47(8), 769-778.
  • Statgraphics Plus. Statistical analysis using Statgraphics Plus: quality control and experimental design. Technometrics 2000, 42(3), 323-323.
  • Baldrian, P. Increase of laccase activity during interspecific interactions of white-rot fungi. FEMS Microbiol. Ecol. 2004, 50(3), 245-253.
  • Pan, K.; Zhao, N.; Yin, Q.; Zhang, T.; Xu, X.; Fang, W.; Hong, Y.; Fang, Z.; Xiao, Y. Induction of a laccase Lcc9 from Coprinopsis cinerea by fungal coculture and its application on indigo dye decolorization. Bioresour. Technol. 2014, 162(1), 45-52.
  • Savoie, J.M.; Mata, G.; Billete, C. Extracellular laccase production during hyphal interactions between Trichoderma sp. and Shiitake, Lentinula edodes. Appl. Microbiol. Biotechnol. 1998, 49(5), 589-593.
  • Savoie, J.M.; Mata, G. Trichoderma harzianum metabolites pre-adapt mushrooms to Trichoderma aggressivum antagonism. Mycologia 2003, 95(2), 191-199.
  • Flores, C.; Vidal, C.; Trejo, H.M.R.; Galindo, E.; Serrano, C.L. Selection of Trichoderma strains capable of increasing laccase production by Pleurotus ostreatus and Agaricus bisporus in dual cultures. J. Appl. Microbiol. 2009, 106(1), 249-257.
  • Li, P.; Wang, H.; Liu, G.; Li, X.; Yao, J. The effect of carbon source succession on laccase activity in the co-culture process of Ganoderma lucidum and a yeast. Enzyme Microb. Technol. 2011, 48(1), 1-6.
  • Qian, L.; Chen, B. Enhanced oxidation of benzo[a]pyrene by crude enzyme extracts produced during interspecific fungal interaction of Trametes versicolor and Phanerochaete chrysosporium. J. Environ Sci. 2012, 4(9), 1639-164.
  • Qi-He, C.; Krügener, S.; Hirth, T.; Rupp, S.; Zibek, S. Co-cultured production of lignin-modifying enzymes with white-rot fungi. Appl. Biochem. Biotechnol. 2011, 165(2), 700-718.
  • Mi-Youn, C.; Zimmerman, A.R.; Martínez, C.E.; Douglas, D.; Jean-Marc, B.; Jerzy, D. Characteristic of Trametes villosa laccase adsorbed on aluminum hydroxide. Enzyme Microb. Technol. 2007, 41(1–2): 141-148.
  • Wu, Y.; Jiang, Y.; Jiao, J.; Liu, M.; Hu, F.; Griffiths, B.S.; Li, H. Adsorption of Trametes versicolor laccase to soil iron and aluminum minerals: Enzyme activity and stability studies. Colloids Surf. B. 2014, 114(1)342-348.
  • Kulikova, N.; Davidchik, V.N.; Stepanova, E.V.; Koroleva, O. Enhanced adsorption of atrazine in different soils in the presence of fungal laccase. In Multiple stressors: A challenge for the future, Mothersill, C.; Mosse, I.; Seymour, C. Eds.; Springer Press, Netherlands, 2007; 391-403.
  • Davidchik, V.N.; Kulikova, N.A.; Golubeva, L.I.; Stepanova, O.V.; Koroleva O.V. Coriolus hirsutus laccase effect on atrazine adsorption and desorption by different types of soil. Appl. Biochem. Microbiol. 2008, 44(4)440-445.
  • Demir, A.; Aytar, P.; Gedikli, S.; Cabuk, A.; Arisoy, M. Laccase production with submerged and solid state fermentation: benefit and cost analysis. J. Biol. Chem. 2011, 39(3), 305-313.
  • Marco, U.E.; Ready, C.A. Degradation of chloro-organic pollutants white-rot fungi. In Microbial degradation of xenobiotics. Singh, S.N. Ed.; Springer-Verlag Press, Berlin, Germany, 2012; 31-66.
  • Rodríguez-Couto, S.; Moldes, D.; Sanromán, M. Optimum stability conditions of pH and temperature for ligninase and manganese-dependent peroxidase from Phanerochaete chrysosporium. Application to in vitro decolorization of Poly R-478 by MnP. World J. Microbiol. Biotechnol. 2006, 22(6), 607-612.
  • Ozturk, U.R.; Kasikara, P.N. Enhanced production of manganese peroxidase by Phanerochaete chrysosporium. Braz. Arch. Biol. Technol. 2007, 50(6), 913-920.
  • Nguyen, L.N.; Hai, F.I.; Kang, J.; Leusch, F.D.L.; Roddick, F.; Magram, S.F.; Price, W.E.; Nghiem, L.D. Enhancement of trace organic contaminant degradation by crude enzyme extract from Trametes versicolor culture: Effect of mediator type and concentration. J. Taiwan Inst. Chem. E. 2014, 45(4), 1855-1862.
  • Seffernick, J.L.; Shapir, N.; Schoeb, M.; Johnson, G.; Sadowsky, M.J.; Wackett, L.P. Enzymatic degradation of chlorodiamino-s-triazine. Appl. Environ. Microbiol. 2002, 68(9), 4672-4675.
  • Seffernick, J.L.; Johnson, G.; Sadowsky, M.J.; Wackett, L.P. Substrate specificity of atrazine chlorohydrolase and atrazine catabolizing bacteria. Appl. Environ. Microbiol. 2002, 66(1), 4247-4252.
  • Govantes, F.; Porrúa, O.; García-Gonzales, V.; Santero, E. Atrazine biodegradation in the lab and in the field: enzymatic activities and gene regulation. Microb. Biotechnol. 2009, 2(2), 178-185.
  • Singh, H. Fungal biodegradation and biodeterioration. In Mycoremediation Fungal Bioremediation. Singh, H. Ed.; Wiley-Interscience Press: New Jersey, USA, 2006; 1-28.
  • Laurent, F.; Cébrona, A.; Schwartz, C.; Leyva, C. Oxidation of a PAH polluted soil using modified Fenton reaction in unsaturated condition affects biological and physico-chemical properties. Chemosphere 2012, 86(6), 659-664.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.