Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 51, 2016 - Issue 5
174
Views
2
CrossRef citations to date
0
Altmetric
ARTICLES

Chemical characterization of fatty acids, alkanes, n-diols and alkyl esters produced by a mixed culture of Trichoderma koningii and Penicillium janthinellum grown aerobically on undecanoic acid, potatoe dextrose and their mixture

, , &
Pages 326-339 | Received 01 Oct 2015, Published online: 06 Feb 2016

References

  • Stephanopoulos, G.N.; Aristidou, A.A.; Nielsen, J.E. Metabolic engineering: principles and methodologies. New York: Academic Press; 1998; 494.
  • Rittmann, B.E. Opportunities for renewable bioenergy using microorganisms. Biotech. Bioengin. 2008, 100, 203–212.
  • Hong, Y.; Zurbriggen, A.S.; Melis, A. Isoprene hydrocarbons production upon heterologous transformation of Saccharomyces cerevisiae. J. Appl. Microb. 2012, 113, 52–65.
  • Ladygina, N.; Dedyukhina, E.G.; Vainshtein, M.B. A review on microbial synthesis of hydrocarbons. Process Biochem. 2006, 41, 1001–1014.
  • Spormann, A.M.; Widdel, F. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation. 2000, 11, 85–105.
  • Monreal, C.M.; Schnitzer M. Production of a refined bio-oil derived by fast pyrolysis of chicken manure with chemical and physical characteristics close to those of fossil fuels. J. Envir. Sci. Health, Part B, 2011, 46, 630–637.
  • Lee, S.K.; Chou, H.; Ham, T.S.; Lee, T.S.; Keasling, J.D. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr.Opin. Biotechn. 2008, 19, 556–563.
  • Templier, J.; Largeau, C.; Casadevall, E. Non-specific elongation-decarboxylation in biosynthesis of cis and trans alkadienes by Botryococcus braunii. Phytochem. 1991, 30, 175–183.
  • Birch, L.; Bachofen, R. Microbial production of hydrocarbons. In Biotechnology; Rehm, H.J., Ed.; VCH, Weinheim, 1988, 6, 71–99.
  • Sukovich, D.J.; Seffernick, J.L.; Richman, J.E.; Gralnick, J.A.; Wackett, L.P. Widespread head-to-head hydrocarbon biosynthesis in bacteria and role of OleA. Appl. Envir. Microb. 2010, 76, 3850–3862.
  • Brown, M.; Shanks, J. Linear hydrocarbon producing pathways in plants, algae and microbes. In Sustainable Bioenergy and Bioproducts; Gopalakrishnan, K.; Leeuwan, J.; Brown, R., Eds., Springer, London, 2012; 1–11.
  • Park, M.O. New pathway for long-chain n-alkane synthesis via 1-alcohol in Vibrio furnissii M1. J. Bact. 2005, 187, 1426–1429.
  • Chahal, A.; Monreal, C.M.; Bissette, J.; Rowland, O.; Smith, M.L.; Miller, S.S. Metabolism of n-C10:0 and n-C11:0 fatty acids by Trichoderma koningii, Penicillium janthinellum and their mixed culture: I. Biomass and CO2 production, and allocation of intracellular lipids. J. Envir. Sci. Health, Part B, 2014, 49, 945–954.
  • Monreal, C.M.; Chahal, A.; Rowland, O.; Smith, M.; Schnitzer M. Metabolism of nC11 fatty acid fed to Trichoderma koningii and Penicillium janthinellum. II: production of intracellular and extracellular lipids. J. Envir. Sci. Health, Part B, 2014, 49, 955–965.
  • Bligh, E.G.; Dyer, W.J. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917.
  • Muñoz, C.; Monreal, C.; Schnitzer, M.; Zagal, E. Influence of Acacia caven (Mol) coverage on carbon distribution and its chemical composition in soil organic carbon fractions in a Mediterranean-type climate region. Geoderma 2008, 144, 352–360.
  • Muñoz, C.; Monreal, C.; Schnitzer, M.; Zagal, E. Analysis of soil humic acids in particle size fractions of an alfisol from a Mediterranean-type climate. Geoderma 2009, 151, 199–203.
  • Sorge, C.; Schnitzer, M.; Schulten, H-R. In-source pyrolysis-field ionization mass spectrometry and Curie-point pyrolysis-gas chromatography/mass spectrometry of amino acids in humic substances and soils. Biol. Fertil. Soils 1993, 16, 100–110.
  • Emwas, A.H.M. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. In Metabolomics: Methods and Protocols, Methods in Molecular Biology; Bjerrum, J.T., Ed.; Springer Science+Business Media, New York, NY, 2015, Vol. 1277, 161–193.
  • Risé, P.; Marangoni, F.; Galli, C. Regulation of PUFA metabolism: pharmacological and toxicological aspects. Prostagl. Leukot. Essent. Fatty Ac. 2002, 67, 85–89.
  • Arjuna, A. Production of unsaturated fatty acids by fungi: a review. Int. J. Pharma Bio Sci. 2014, B5, 931–954.
  • Lennen, R.M.; Braden, D.J.; West, R.M.; Dumesic, J,A.; Pfleger, B.F. A process for microbial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotech. Bioengin. 2010, 106, 193–202.
  • Oro, J.; Laseter, J.L.; Weber, D. Alkanes in fungal spores. Science 1966, 154, 399–400.
  • Baker, K.; Strobel, A. Lipids in the cell wall of Puccinia Striiformis uredospores. Proc. Montana Acad. Sci. 1965, 25, 83–86.
  • Huang, X.; Xue, J.; Guo, S. Long chain n-alkanes and their carbon isotopes in lichen species from western Hubei Province: implication for geological records. Front Earth Sci. 2012, 6, 95–100.
  • Fisher, D.J.; Brown, G.; Holloway, P.J. Influence of growth medium on surface and wall lipid of fungal spore. Phytochem. 1978, 17, 85–89.
  • Schirmer, A.; Rude, M.A.; Li, X.; Popova, E.; Cardayre, S.B. Microbial biosynthesis of alkanes. Science 2010, 329, 559–567.
  • Bernard, A.; Domergue, F.; Pascal, S.; Jetter, R; Renne, C.; Faure, J.D.; Haslam, R.P.; Napier, J.A.; Lessire, R.; Joubes, J. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis Eceriferum1 and Eceriferum3 are core components of a very-long-chain alkane synthesis complex. Am. Soc. Plant Biol. 2012, 24, 3106–3118.
  • Wilkes, H.; Kühner, S.; Bolm, C.; Fischer, T.; Classen, A.; Widdel, F.; Rabus, R. Formation of n-alkane- and cycloalkane-derived organic acids during anaerobic growth of a denitrifying bacterium with crude oil. Org. Geochem. 2003, 34, 1313–1323.
  • Schnitzer, M.; Monreal, C.M.; Powell, E.E. Wheat straw biomass: a resource for high-value chemicals. J. Envir. Sci. Health, Part B, 2014, 49, 51–67.
  • Strobel, G.A.; Knighton, B.; Kluck, K.; Ren, Y.; Livinghouse, T.; Griffin, M.; Spakowicz, D.; Sears, J. The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum. Microbiology 2008, 154, 3319–3328.
  • Ahamed, A.; Ahring, B.K. Production of hydrocarbon compounds by endophytic fungi Gliocladium species grown on cellulose. Biores. Technol. 2011, 102, 9718–9722.
  • Ul-Hassan, S.R.; Strobel, G.A.; Booth, E.; Knighton, B.; Floerchinger, C.; Sears, J. Modulation of volatile organic compound formation in the Mycodiesel-producing endophyte Hypoxylon sp. Cl-4. Microbiology 2012, 158, 465–473.
  • Atsumi, S.; Hanai, T.; Liao, J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols and biofuels. Nature Lett. 2007, 451, 86–90.
  • Kourist, R.; Bornscheuer, U.T. Biocatalytic synthesis of optically active tertiary alcohols. Appl. Microb. Biotech. 2011, 91, 505–517.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.