Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 53, 2018 - Issue 2
227
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

The sensitivity of soil enzymes, microorganisms and spring wheat to soil contamination with carfentrazone-ethyl

, , , &
Pages 97-107 | Received 05 Jun 2017, Accepted 04 Sep 2017, Published online: 27 Nov 2017

References

  • Kalia, A.; Gosal, S. K. Effect of pesticide application on soil microorganisms. Arch. Agron. Soil. Sci. 2011, 57(6), 569–596.
  • Munoz-Leoz, B.; Ruiz-Romera, E.; Antiguedad, I.; Garbisu, C. Tebuconazole application decreases soil microbial biomass and activity. Soil Biol Biochem. 2011, 43, 2176–2183.
  • Truu, M.; Truu, J.; Ivask, M. Soil microbiological and biochemical properties for assessing the effect of agricultural management practices in Estonia cultivated soils. Eur. J. Soil Biol. 2008, 44, 231–237.
  • Zhang, Ch.; Liu, X.; Dong, F.; Xu, J.; Zheng, Y.; Li, J. Soil microbial response to herbicide 2,4-dichlorophenoxyacetic acid butyl ester. Eur. J. Soil Biol. 2010, 46, 175–180.
  • Lupwayi, N. Z.; Harker, K. N.; Clayton, G. W.; O'Donovan, J. T.; Blackshaw, R. E. Soil microbial response to herbicides applied to glyphosate-resistant canola. Agric. Ecosyst. Environ. 2009, 129, 171–176.
  • Lupwayi, Z. N.; Arshad, A. M.; Rice, W. A.; Clayton, G. W. Bacterial diversity in water-stable aggregates of soils under conventional and zero tillage management. Appl. Soil Ecol. 2001, 16(3), 251–261.
  • Imfeld, G.; Vuilleumier, S. Measuring the effects of pesticides on bacterial communities in soil: A critical review. Eur. J. Soil Biol. 2012, 49, 22–30.
  • Kucharski, J.; Karuzo-Wankiewicz, L.; Kuczynska, L. The effect of soil contamination with herbicide starane 250 EC on its microbiological properties. Acta Agr. et Silv. S. Silv. Agr. 2004, 42, 257–263.
  • United State Environmental Protection Agency. Pesticide Fact Sheet. 30 September, 1998.
  • Han, L.; Xu, Y.; Dong, M.; Qian, Ch. Dissipation and residues of Carfentrazone-ethyl in wheat and soil. Bull. Environ. Contam. Toxicol. 2007, 79, 445–447.
  • Koschnick, T. J.; Haller, W. T.; Chen, A. W. Carfentrazone-ethyl pond dissipation and efficacy on floating plants. J. Aquat. Plant Manag. 2004, 42, 103–108.
  • Mack Thompson, W.; Nissen, S. J. Absorption and fate of Carfentrazone-ethyl in Zea Mays, Glycine Max, and Abutilon Theophrasti. Weed Sci. 2001, 48(1), 15–19.
  • Ngim, K. K.; Crosby, D. G. Fate and Kinetics of Carfentrazone-ethyl herbicide in California, USA, flooded rice fields. Environ. Toxicol. Chem. 2001, 20(3), 485–490.
  • World Reference Base for Soil Resources. A framework for international classification, correlation and communication. World Soil Resour. Rep. FAO. Rome. 2014, 103.
  • Sowiński, P.; Smólczyński, S.; Orzechowski, M. The effect of agricultural land utilization on physical and water properties of soil in a ground moraine of the Mazurian Lakeland Annales UMCS. Sec. E. 2004, 59(3), 1057–1064.
  • Material Safety Data Sheet. Aurora 40 WG. (accessed 29 October 2008).
  • Dong, M.; Ma, Y.; Liu, F.; Qian, C.; Han, L.; Jiang, S. Use of multiwalled carbon nanotubes as a SPE adsorbent for analysis of Carfentrazone ethyl in water. Chromatographia 2009, 69(1,2), 73–77.
  • Oht, H.; Hattori, T. Oligotrophic bacteria on organic debris and plant roots in paddy field. Soil Biol. Biochem. 1983, 1, 1–8.
  • Alexander, M. Microorganisms and chemical pollution. Bioscience 1973, 23, 509–515.
  • Fenglerowa, W. Simple method for counting Azotobacter in soil samples. Acta Microbiol. Pol. 1965, 14, 203–206.
  • Parkinson, D.; Gray F. R. G.; Williams, S. T. Methods for Studying the Ecology of Soil Micro-Organism. Blackwell Scientific Publication, Oxford. IBP Handbook. 1971; 19.
  • Martin, J. P. Use of acid Rose Bengal and Streptomycin in the plate method for estimating soil fungi. Soil Sci. 1950, 69, 215–233.
  • Kucharski, J.; Tomkiel, M.; Baćmaga, M; Borowik, A.; Wyszkowska, J. Enzyme activity and microorganisms diversity in soil contaminated with the herbicide Boreal 58 WG. J. Environ. Sci. Health B. 2016, 51(7), 446–454.
  • Öhlinger, R. Dehydrogenase activity with the substrate TTC. In Methods in Soil Biology; Schinner, F., Öhlinger, R., Kandeler, E., Margesin, R., Eds.; Springer Verlag: Berlin Heidelberg, 1996; 241–243.
  • Alef, K.; Nannipieri, P.; Trazar-Capeda, C. Phosphatase activity. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P. Eds.; Academic Press, Harcourt Brace and Company, Publishers: London, 1998; 335–344.
  • Alef, K.; Nannipieri, P. Catalase activity, Arylsulphatase activity, β-glucosidase activity. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press, Harcourt Brace and Company, Publishers: London, 1998; 234–576.
  • Borowik, A.; Wyszkowska, J.; Kucharski, J.; Baćmaga, M.; Tomkiel, M. Response of microorganisms and enzymes to soil contamination with a mixture of Terbuthylazine, Mesotrione and S-Metolachlor. Environ. Sci. Pollut. Res. 2017, 24, 1910–1925.
  • Carter, M. R. Soil Chemical Analyses. Soil Sampling and Methods of Analysis. Canadian Society of Soil Science. Lewis Publishers: London, 1993; 823.
  • Nelson, D.W.; Sommers, L.E. Total carbon, organic, and organic matter. In Methods of Soil Analysis; D.L. Sparks Ed(s).; American Society of Agronomy, 1996, Part 3(3), 961–1010.
  • Statsoft, Inc, Statistica. Data analysis software system, version 12.5, 2015 <http://www.statsoft.com.>.
  • Wyszkowska, J.; Borowik, A.; Kucharski, M.; Kucharski, J. Applicability of biochemical indices to quality assessment of soil polluted with heavy metal. J. Elem. 2013, 18(4), 723–732.
  • Malik, Z.; Ahmad, M.; Abassi, G. H.; Dawood, M.; Hussain A.; Jamil, Z. Agrochemicals and soil microbes: Interaction for soil health. In Xenobiotics in the Soil Environment; Hashmi, M., Kumar, V., Varma, A. Ed(s); Springer International Publishing: Cham. 2017; 139–152.
  • Ma, X.; Ding, N.; Peterson, E. C. Bioaugmentation of soil contaminated with high-level crude oil through inoculation with mixed cultures including Acremonium sp. Biodegradation 2015, 26, 259–269.
  • Sankaran, S.; Khanal, S. K.; Jasti, N.; Jin, B.; Pometto, A. L.; Van Leeuwen, J. Use of filamentous fungi for wastewater treatment and production of high value fungal by products: A review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 400–449.
  • Sebiomo, A.; Ogundero, W. V.; Bankole A. S. Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity. Afr. J. Biotechnol. 2011, 10(5), 770–778.
  • Filimon, N. M.; Maniu, P.; Bran G. M. The effect of high Difenoconazole concentration on soil microbiota assassed by microbiological analysis. Ann. West Univ. Timisporaser. Biol. 2016, 19(2), 187–198.
  • Baćmaga, M.; Kucharski, J.; Wyszkowska, J.; Borowika, A.; Tomkiel, M. Response of microorganisms and enzymes to soil contamination with Metazachlor. Environ. Earth Scienc. 2014, 72(7), 2251–2262.
  • Omar, S. A.; Abdel-Sater, M. A. Microbial populations and enzyme activities in soil treated with pesticides. Water, Air, Soil Pollut. 2001, 127(1), 49–63.
  • Milošević, N. A.; Govedarica, M. M. Effect of herbicides on microbiological properties of soil. Zb. Matice Srpske Za Prirodne Nauke/Matica Srpska J. Natur. Sci. 2002, 102, 5–21.
  • Chennappa, G.; Adkar-Purushothama, C. R.; Suraj, U.; Tamilvendan, K.; Sreenivasa, M. Y. Pesticide tolerant Azotobacter isolated from paddy growing areas of Northern Karnataka, India. World J. Microbiol. Biotechnol. 2014, 30, 1–7.
  • Ratcliff, A. W.; Busse, M. D.; Shestak, K. J. Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Appl. Soil Ecol. 2006, 34(2,3), 114–124.
  • Lone, A. H.; Raverkar, K. P.; Pareek, N.; Chandra, R. Response of soil microbial communities to the selective herbicides: A microcosm approach. JPAM. 2014, 8(2), 1559–1567.
  • Baćmaga, M.; Wyszkowska, J.; Borowik, A.; Tomkiel, M.; Kucharski, J. Response of fungi, β-glucosidase and arylsulfatase to soil contamination by Alister Grande 190 OD, Fuego 500 SC and Lumax 537,5 SE herbicides. Pol. J. Environ. Stud. 2014, 23(1), 19–25.
  • Tomkiel, M.; Wyszkowska, J.; Kucharski, J.; Baćmaga, M.; Borowik, A. Response of microorganisms and enzymes to soil contamination with the herbicide Successor T 550 SE. Environ. Protect. Eng. 2014, 40(4), 15–27.
  • Cycoń, M.; Piotrowska-Seget, Z. Changes in bacterial diversity and community structure following pesticides addition to soil estimated by cultivation technique. Ecotoxicol. 2009, 18(5), 632–642.
  • Zhang, Q.; Zhu, L.; Wang, J.; Xie, H.; Wang, J.; Wang, F.; Sun, F. Effects of Fomesafen on soil enzyme activity, microbial population, and bacterial community composition. Environ. Monit. Assess. 2014, 186(5), 2801–2812.
  • Baćmaga, M.; Boros, E.; Kucharski, J.; Wyszkowska, J. Enzymatic activity in soil contaminated with the Aurora 40 WG Herbicide. Environ. Protect. Engin. 2012, 38(1), 91–102.
  • Wyszkowska, J.; Tomkiel, M.; Baćmaga, M.; Borowik, A.; Kucharski J. Response of microorganisms and enzymes to soil contamination with mixture of Pethoxamid and Terbuthylazine. Environ. Earth Sci. 2016, 75, 1285.
  • Baćmaga, M.; Borowik, A.; Kucharski, J.; Tomkiel, M.; Wyszkowska, J. Microbial and enzymatic activity of soil contaminated with a mixture of Diflufenican + Mesosulfuron-Methyl + Iodosulfuron-Methyl-Sodium. Environ. Sci. Pollut. Res. 2015, 22, 643–656.
  • Tejada, M. Evolution of soil biological properties after addition Of Glyphosate, Diflufenican and Glyphosate + Diflufenican Herbicides. Chemosphere 2009, 76(3), 365–373.
  • Wyszkowska, J.; Kucharski, J. Biochemical and physicochemical properties of soil contaminated with herbicide Triflurotox 250 EC. Pol. J. Environ. Stud. 2004, 13(2), 223–231.
  • Dias, M. C. Phytotoxicity: An overview of the physiological responses of plants exposed to fungicides. J. Bot. 2012, 1–4.
  • Kucharski, J.; Wyszkowska, J. Biological properties of soil contaminated with the herbicide Apyros 75 WG. J. Elem. 2008, 13(3), 357–371.
  • Elbashier, M. M. A.; Shao, X. M.; Mohmmed, A.; Ali, A. A. S.; Osman, B. H. Effect of pesticide residues (Sevin) on carrot (Daucus carota L.) and free nitrogen fixers (Azotobacter spp.). Agric. Sci. 2016, 7, 93–99.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.