Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 53, 2018 - Issue 5
114
Views
2
CrossRef citations to date
0
Altmetric
Articles

Selective effects of fenitrothion on murine splenic T-lymphocyte populations and cytokine/granzyme production

, , , , , , & show all
Pages 319-326 | Received 18 Oct 2017, Accepted 23 Dec 2017, Published online: 12 Feb 2018

References

  • Mokdad-Bzeouich, I.; Mustapha, N.; Sassi, A.; Bedoui, A.; Ghoul, M.; Ghedira, K.; Chekir-Ghedira, L. Investigation of immunomodulatory and anti-inflammatory effects of eriodictyol through its cellular anti-oxidant activity. Cell Stress Chaperones. 2016, 21(5), 773–781. doi:10.1007/s12192-016-0702-8.
  • Banerjee, B. D.; Koner, B. C.; Ray, A. Immunotoxicity of pesticides: Perspectives and trends. Indian J. Exp. Biol. 1996, 34(8), 723–733.
  • Christin, M. S.; Gendron, A. D.; Brousseau, P.; Ménard, L.; Marcogliese, D. J.; Cyr, D.; Ruby, S.; Fournier, M. Effects of agricultural pesticides on the immune system of Rana pipiens and on its resistance to parasitic infection. Environ. Toxicol. Chem. 2003, 22(5), 1127–1133. doi:10.1002/etc.5620220522.
  • Nishimoto, S. N.; Anda, K. K.; Kabe, M. O.; Kiyama, K. A. Abnormal Response Induced by Pesticides on Mammalian Immune System. Interdiscip. Stud. Environ. Chem. 2009, 211–217.
  • Vine, M. F.; Stein, L.; Weigle, K.; Schroeder, J.; Degnan, D.; Tse, C. K.; Hanchette, C.; Backer, L. Effects on the immune system associated with living near a pesticide dump site. Environ. Health Perspect. 2000, 108(12), 1113–1124. doi:10.1289/ehp.001081113.
  • Durham, H. D.; Ecobichon, D. J. An assessment of the neurotoxic potential of fenitrothion in the hen. Toxicology. 1986, 41(3), 319–332. doi:10.1016/0300-483X(86)90185-X.
  • Sarikaya, R.; Selvi, M.; Erkoç, F. Investigation of acute toxicity of fenitrothion on peppered corydoras (Corydoras paleatus) (Jenyns, 1842). Chemosphere. 2004, 56(7), 697–700. doi:10.1016/j.chemosphere.2004.04.008.
  • El-Shenawy, N. S. Effects of insecticides fenitrothion, endosulfan and abamectin on antioxidant parameters of isolated rat hepatocytes. Toxicol. Vitr. 2010, 24(4), 1148–1157. doi:10.1016/j.tiv.2010.03.001.
  • Struve, M. F.; Turner, K. J.; Dorman, D. C. Preliminary investigation of changes in the sexually dimorphic nucleus of the rat medial preoptic area following prenatal exposure to fenitrothion. J. Appl. Toxicol. 2007, 27(6), 631–636. doi:10.1002/jat.1267.
  • Nakashima, K.; Yoshimura, T.; Mori, H.; Kawaguchi, M.; Adachi, S.; Nakao, T.; Yamazaki, F. Effects of pesticides on cytokines production by human peripheral blood mononuclear cells–fenitrothion and glyphosate. Chudoku Kenkyu. 2002, 15(2), 159–165.
  • Moon, C. K.; Yun, Y. P.; Lee, S. H. Effects of some organophosphate pesticides on the murine immune system following subchronic exposure (II). Arch. Pharm. Res. 1986, 9(3), 183–187. doi:10.1007/BF02900004.
  • Kuang, P.; Deng, H.; Cui, H.; Chen, L.; Guo, H. Suppressive effects of sodium fluoride on cultured splenic lymphocyte proliferation in mice. Oncotarget. 2016, 7(38), 61905–61915. doi:10.18632/oncotarget.11308.
  • Wang, P.; Wang, J.; Sun, Y. J.; Yang, L.; Wu, Y. J. Cadmium and chlorpyrifos inhibit cellular immune response in spleen of rats. Environ. Toxicol. 2017, 32(7), 1927–1936. doi:10.1002/tox.22415.
  • El-Bini, D. I.; Lasram, M. M.; Annabi, A.; Gharbi, N.; El-Fazaa, S. A comparative study on toxicity induced by carbosulfan and malathion in Wistar rat liver and spleen. Pestic. Biochem. Physiol. 2015, 124, 21–28. doi:10.1016/j.pestbp.2015.03.012.
  • Medjdoub, A.; Merzouk, S. A.; Merzouk, H.; Chiali, F. Z.; Narce, M. Effects of Mancozeb and Metribuzin on in vitro proliferative responses and oxidative stress of human and rat spleen lymphocytes stimulated by mitogens. Pestic. Biochem. Physiol. 2011, 101(1), 27–33. doi:10.1016/j.pestbp.2011.06.002.
  • Li, Q.; Kobayashi, M.; Inagaki, H.; Hirata, Y.; Sato, S.; Ishizaki, M.; Okamura, A.; Wang, D.; Nakajima, T.; Kamijima, M.; et al. Effect of oral exposure to fenitrothion and 3-methyl-4-nitrophenol on splenic cell populations and histopathological alterations in spleen in Wistar rats. Hum. Exp. Toxicol. 2011, 30(7), 665–674. doi:10.1177/0960327110377525.
  • Prakasam, A.; Sethupathy, S.; Lalitha, S. Plasma and RBCs antioxidant status in occupational male pesticide sprayers. Clin. Chim. Acta. 2001, 310(2), 107–112. doi:10.1016/S0009-8981(01)00487-9.
  • Altuntas, I.; Delibas, N.; Demirci, M.; Kilinc, I.; Tamer, N. The effects of methidathion on lipid peroxidation and some liver enzymes: Role of vitamins E and C. Arch. Toxicol. 2002, 76(8), 470–473. doi:10.1007/s00204-002-0359-1.
  • Elhalwagy, M. E. A.; Darwish, N. S.; Zaher, E. M. Prophylactic effect of green tea polyphenols against liver and kidney injury induced by fenitrothion insecticide. Pestic. Biochem. Physiol. 2008, 91(2), 81–89. doi:10.1016/j.pestbp.2008.01.006.
  • Budin, S. B.; Han, C. M.; Jayusman, P. A.; Taib, I. S. Tocotrienol rich fraction prevents fenitrothion induced pancreatic damage by restoring antioxidant status. Pakistan J. Biol. Sci. 2012, 15(11), 517–523. doi:10.3923/pjbs.2012.517.523.
  • Benencia, F.; Courrèges, M. C.; Coulombié, F. C. In vivo and in vitro immunomodulatory activities of Trichilia glabra aqueous leaf extracts. J. Ethnopharmacol. 2000, 69(3), 199–205. doi:10.1016/S0378-8741(99)00010-0.
  • Institóris, L.; Siroki, O.; Dési, I. Immunotoxicity study of repeated small doses of dimethoate and methylparathion administered to rats over three generations. Hum. Exp. Toxicol. 1995, 14(11), 879–883. doi:10.1177/096032719501401104.
  • Girón-Pérez, M. I.; Santerre, A.; Gonzalez-Jaime, F.; Casas-Solis, J.; Hernández-Coronado, M.; Peregrina-Sandoval, J.; Takemura, A.; Zaitseva, G. Immunotoxicity and hepatic function evaluation in Nile tilapia (Oreochromis niloticus) exposed to diazinon. Fish Shellfish Immunol. 2007, 23(4), 760–769. doi:10.1016/j.fsi.2007.02.004.
  • Nishino, R.; Fukuyama, T.; Kosaka, T.; Hayashi, K.; Watanabe, Y.; Kurosawa, Y.; Ueda, H.; Harada, T. Effects of short-term oral combined exposure to environmental immunotoxic chemicals in mice. J. Immunotoxicol. 2014, 11(4), 359–366. doi:10.3109/1547691X.2013.851747.
  • Sakazaki, H.; Ueno, H.; Umetani, K.; Utsumi, H.; Nakamuro, K. Immunotoxicological evaluation of environmental chemicals utilizing mouse lymphocyte mitogenesis test. J. Heal. Sci. 2001, 47(3), 258–271. doi:10.1248/jhs.47.258.
  • Kump, D. F.; Matulka, R. A.; Burton, G. F.; Jordan, S. D.; Holsapple, M. P. Alternations in splenocyte and thymocyte subpopulations in B6C3F1 mice exposed to cocaine plus diazinon. J. Pharmacol. Exp. Ther. 1996, 277(3), 1477–1485.
  • Kim, H. S.; Eom, J. H.; Cho, H. Y.; Cho, Y. J.; Kim, J. Y.; Lee, J. K.; Kim, S. H.; Park, K. L. Evaluation of immunotoxicity induced by pirimiphos-methyl in male Balb/c mice following exposure to for 28 days. J. Toxicol. Env. Heal. A. 2007, 70(15–16), 1278–1287. doi:10.1080/15287390701434372.
  • Yoshimura, A.; Naka, T.; Kubo, M. SOCS proteins, cytokine signalling and immune regulation. Nat. Rev. Immunol. 2007, 7(6), 454–465. doi:10.1038/nri2093.
  • Pruett, S. B.; Chambers, J. E. Effects of paraoxon, p-nitrophenol, phenyl saligenin cyclic phosphate, and phenol on the rat interleukin 2 system. Toxicol. Lett. 1988, 40(1), 11–20. doi:10.1016/0378-4274(88)90178-6.
  • Duramad, P.; Harley, K.; Lipsett, M.; Bradman, A.; Eskenazi, B.; Holland, N. T.; Tager, I. B. Early environmental exposures and intracellular Th1/Th2 cytokine profiles in 24-month-old children living in an agricultural area. Environ. Health. Perspect. 2006, 114(12), 1916–1922.
  • Alluwaimi, A. M.; Hussein, Y.; ABu Elzein, E. M. Levels of interleukin-2 and interleukin-4 as markers for dimethoate immunotoxicity in mice. Alex. J. Vet. Sci. 1999, 15(4), 703–707.
  • Alluwaimi, A. M.; Hussein, Y. Diazinon immunotoxicity in mice: Modulation of cytokines level and their gene expression. Toxicology. 2007, 236(1), 123–131. doi:10.1016/j.tox.2007.04.004.
  • Duramad, P.; Tager, I. B.; Leikauf, J.; Eskenazi, B.; Holland, N. T. Expression of Th1/Th2 cytokines in human blood after in vitro treatment with chlorpyrifos, and its metabolites, in combination with endotoxin LPS and allergen Der p1. J. Appl. Toxicol. 2006, 26(5), 458–465. doi:10.1002/jat.1162.
  • Srivastava, S.; Singh, D.; Patel, S.; Singh, M. R. Role of enzymatic free radical scavengers in management of oxidative stress in autoimmune disorders. Int. J. Biol. Macromol. 2017, 101, 502–517. doi:10.1016/j.ijbiomac.2017.03.100.
  • Schieber, M.; Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24(10), 453–462. doi:10.1016/j.cub.2014.03.034.
  • Yang, L.; Ma, S.; Wan, Y.; Duan, S.; Ye, S.; Du, S.; Ruan, X.; Sheng, X.; Weng, Q.; Taya, K.; et al. In vitro effect of 4-pentylphenol and 3-methyl-4-nitrophenol on murine splenic lymphocyte populations and cytokine/granzyme production. J. Immunotoxicol. 2016, 13(4), 548–556. doi:10.3109/1547691X.2016.1140853.
  • Gu, Z. Y.; Li, F. C.; Hu, J. S.; Ding, C.; Wang, C.; Tian, J. H.; Xue, B.; Xu, K. Z.; Shen, W. D.; Li, B. Sublethal dose of phoxim and Bombyx mori nucleopolyhedrovirus interact to elevate silkworm mortality. Pest. Manag. Sci. 2016, 73(3), 554–561. doi:10.1002/ps.4326.
  • Bakunina, N.; Pariante, C. M.; Zunszain, P. A. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology. 2015, 144(3), 365–373. doi:10.1111/imm.12443.
  • Ball, J. A.; Vlisidou, I.; Blunt, M. D.; Wood, W.; Ward, S. G. Hydrogen Peroxide Triggers a Dual Signaling Axis To Selectively Suppress Activated Human T Lymphocyte Migration. J. Immunol. 2017, 198(9), 3679–3689. doi:10.4049/jimmunol.1600868.
  • Jackson, S. H.; Devadas, S.; Kwon, J.; Pinto, L. A.; Williams, M. S. T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation. Nat. Immunol. 2004, 5(8), 818–827. doi:10.1038/ni1096.
  • Denu, J. M.; Tanner, K. G. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: Evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry. 1998, 37(16), 5633–5642. doi:10.1021/bi973035t.
  • Yoo, S. k.; Starnes, T. W.; Deng, Q.; Huttenlocher, A. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature. 2011, 480(7375), 109–112. doi:10.1038/nature10632.
  • Haddad, J. J. Science review: Redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: role for nuclear factor-kappaB. Crit. Care. 2002, 6(6), 481–490. doi:10.1186/cc1839.
  • Bogeski, I.; Kummerow, C.; Al-Ansary, D.; Schwarz, E. C.; Koehler, R.; Kozai, D.; Takahashi, N.; Peinelt, C.; Griesemer, D.; Bozem, M.; et al. Differential redox regulation of ORAI ion channels: A mechanism to tune cellular calcium signaling. Sci. Signal. 2010, 3(115), 1–9. doi:10.1126/scisignal.2000672.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.