Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 53, 2018 - Issue 12
181
Views
1
CrossRef citations to date
0
Altmetric
Articles

The effect of adaptation of Lactobacillus amylovorus to increasing concentrations of sweet potato starch on the production of lactic acid for its potential use in the treatment of cannery waste

&
Pages 802-809 | Received 16 Mar 2018, Accepted 15 May 2018, Published online: 10 Sep 2018

References

  • Pagana, I.; Morawicki, R.; Hager, T.J. Lactic acid production using waste generated from sweet potato processing. Int. J. Food Sci. Technol. 2014, 49, 641–649.
  • Abe, S.; Takagi, M. Simultaneous saccharification and fermentation of cellulose to lactic acid. Biotechnol. Bioeng. 1991, 37, 93–96.
  • Litchfield, J.H. Microbiological production of lactic acid. Adv. Appl. Microbiol. 1996, 42, 45–95.
  • Datta, R.; Henry, M. Lactic acid: Recent advances in products, processes and technologies—a review. J. Chem. Technol. Biotechnol. 2006, 81, 1119–1129.
  • John, R.P.; Anisha, G.S.; Nampoothiri, K.M.; Pandey, A. Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. Biotechnol. Adv. 2009, 27, 145–152.
  • Nakamura, L. Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations. Int. J. Syst. Bacteriol. 1981, 31, 56–63.
  • Giraud, E.; Brauman, A.; Keleke, S.; Lelong, B.; Raimbault, M. Isolation and physiological study of an amylolytic strain of Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 1991, 36, 379–383.
  • Reddy, G.; Altaf, M.; Naveena, B.; Venkateshwar, M.; Kumar, E.V. Amylolytic bacterial lactic acid fermentation—a review. Biotechnol. Adv. 2008, 26, 22–34.
  • Xiaodong, W.; Xuan, G.; Rakshit, S. Direct fermentative production of lactic acid on cassava and other starch substrates. Biotechnol. Lett. 1997, 19, 841–843.
  • Liu, D.; Zeng, R.J.; Angelidaki, I. Enrichment and adaptation of extreme-thermophilic (70 C) hydrogen producing bacteria to organic household solid waste by repeated batch cultivation. Int. J. Hydrogen Energy 2008, 33, 6492–6497.
  • Puranik, S.; Shaligram, S.; Paliwal, V.; Raje, D.V.; Kapley, A.; Purohit, H.J. Demonstration of sequential adaptation strategy for developing salt tolerance in bacteria for wastewater treatment: a study using Escherichia coli as model. Bioresour. Technol. 2012, 121, 282–289.
  • Edmond, J.B.; Ammerman, G.R. Sweet Potatoes: Production, Processing, Marketing; Avi Publishing Company: Westport, CT, 1971.
  • Woolfe, J.A. Sweet Potato: An Untapped Food Resource; Cambridge University Press: New York, 1992.
  • Nguyen, C.M.; Choi, G.J.; Choi, Y.H.; Jang, K.S.; Kim, J. D-and L-lactic acid production from fresh sweet potato through simultaneous saccharification and fermentation. Biochem. Eng. J. 2013, 81, 40–46.
  • de Man, J.C.; Rogosa, M.A.; Sharpe, M.E. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 1960, 23, 130–135.
  • Collado, L.S.; Corke, H. Properties of starch noodles as affected by sweet potato genotype. Cereal Chem. 1997, 74, 182–187.
  • Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356.
  • Cheng, P.; Mueller, R.; Jaeger, S.; Bajpai, R.; Iannotti, E. Lactic acid production from enzyme-thinned corn starch using Lactobacillus amylovorus. J. Ind. Microbiol. 1991, 7, 27–34.
  • Trontel, A.; Baršić, V.; Slavica, A.; Šantek, B.; Novak, S. Modelling the effect of different substrates and temperature on the growth and lactic acid production by Lactobacillus amylovorus DSM 20531T in batch process. Food Technol. Biotechnol. 2010, 48, 352–361.
  • Chatterjee, M.; Chakrabarty, S.; Chattopadhyay, B.; Mandal, R. Production of lactic acid by direct fermentation of starchy wastes by an amylase-producing lactobacillus. Biotechnol. Lett. 1997, 19, 873–874.
  • Santoyo, C.M.; Loiseau, G.; Rodriguez Sanoja, R.; Guyot, J. Study of starch fermentation at low pH by Lactobacillus fermentum ogi E1 reveals uncoupling between growth and α-amylase production at pH 4.0. Int. J. Food Microbiol. 2003, 80, 77–87.
  • Thomsen, M.H.; Guyot, J.P.; Kiel, P. Batch fermentations on synthetic mixed sugar and starch medium with amylolytic lactic acid bacteria. Appl. Microbiol. Biotechnol. 2007, 74, 540–546.
  • Pompeyo, C.C..; Gómez, M.S.; Gasparian, S.; Morlon-Guyot, J. Comparison of amylolytic properties of Lactobacillus amylovorus and of lactobacillus amylophilus. Appl. Microbiol. Biotechnol. 1993, 40, 266–269.
  • James, J.; Lee, B. Cultural conditions for production of glucoamylase from Lactobacillus amylovorus ATCC 33621. J. Appl. Bacteriol. 1995, 79, 499–505.
  • Petrov, K.; Urshev, Z.; Petrova, P. L (−)-lactic acid production from starch by a novel amylolytic Lactococcus lactis subsp. lactis B84. Food Microbiol. 2008, 25, 550–557.
  • Zhang, D.; Cheryan, M. Direct fermentation of starch to lactic acid by Lactobacillus amylovorus. Biotechnol. Lett. 1991, 13, 733–738.
  • Petrova, P.; Petrov, K. Direct starch conversion into L (-)‐lactic acid by a novel amylolytic strain of Lactobacillus paracasei B41. Starch/Stärke. 2012, 64, 10–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.