Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 4
327
Views
10
CrossRef citations to date
0
Altmetric
Articles

The biochemical activity of soil contaminated with fungicides

, &

References

  • Dike, C. C.; Elekwa, I.; Maduka, H. C. C.; Ugwu, C. E.; Ogueche, P. N.; Ofoegbu, C. J. Biostimulation of diesel polluted soil in Uturu-Abia State, Nigeria, using cattle bone powder. IOSR-JESTFT 2013, 5, 2319–2402.
  • Imfeld, G.; Vuilleumier, S. Measuring the effects of pesticides on bacterial communities in soil: a critical review. Eur. J. Soil Biol. 2012, 49, 22–30. DOI:10.1016/j.ejsobi.2011.11.010.
  • Kanissery, R. G.; Sims, G. K. Biostimulation for the enhanced degradation of herbicides in soil. Appl. Environ. Soil Sci. 2011, 1–10. DOI:10.1155/2011/843450.
  • Rani, K.; Dhania, G. Bioremediation and biodegradation of pesticide from contaminated soil and water – a novel approach. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 23–33.
  • Pimmata, P.; Reungsang, A.; Plangklang, P. Comparative bioremediation of carbofuran contaminated soil by natural attenuation, bioaugmentation and biostimulation. Int. Biodeter. Biodegrad. 2013, 85, 196–204. DOI:10.1016/j.ibiod.2013.07.009.
  • Chowdhury, A.; Pradhan, S.; Saha, M.; Sanyal, N. Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian J. Microbiol. 2008, 48, 114–127. DOI:10.1007/s12088-008-0011-8.
  • Tejada, M.; Benítez, C.; Gómez, I.; Parrado, J. Use of biostimulants on soil restoration: effects on soil biochemical properties and microbial community. Appl. Soil Ecol. 2011, 49, 11–17. DOI:10.1016/j.apsoil.2011.07.009.
  • Sopeña, F.; Bending, G. D. Impacts of biochar on bioavailability of the fungicide azoxystrobin: a comparison of the effect on biodegradation rate and toxicity to the fungal community. Chemosphere 2013, 91, 1525–1533.
  • Dong, F.; Liu, X.; Zheng, Y.; Cao, Q.; Li, C. Stereoselective degradation of fungicide triadimenol in cucumber plants. Chirality 2010, 22, 292–298. DOI:10.1002/chir.20715.
  • Li, Y.; Dong, F.; Liu, X.; Xu, J.; Han, Y.; Zheng, Y. Chiral fungicide triadimefon and triadimenol: stereoselective transformation in greenhouse crops and soil, and toxicity to Daphnia magna. J. Hazard. Mater. 2014, 265, 115–123. DOI:10.1016/j.jhazmat.2013.11.055.
  • Adetutu, E. M.; Ball, A. S.; Osborn, A. M. Azoxystrobin and soil interactions: degradation and impact on soil bacterial and fungal communities. J. Appl. Microbiol. 2008, 105, 1777–1790.
  • Purnama, I.; Malhat, F.; Jaikaew, P.; Watanabe, H.; Noegrohati, S.; Rusdiarso, B.; Ahmed, M. T. Degradation profile of azoxystrobin in and isol soil: laboratory incubation. Toxicol. Environ. Chem. 2014, 96, 1141–1152. DOI:10.1080/02772248.2015.1015297.
  • Singh, N.; Singh, S. B.; Mukerjee, I.; Gupta, S.; Gajbhiye, V. T.; Sharma, P. K.; Goel, M.; Dureja, P. Metabolism of 14C-azoxystrobin in water at different pH. J. Environ. Sci. Health B 2010, 45, 123–127.
  • Li, Y.; Dong, F.; Liu, X.; Xu, J.; Han, Y.; Zheng, Y. Enantioselectivity in tebuconazole and myclobutanil non-target toxicity and degradation in soils. Chemosphere 2015, 122, 145–153.
  • Sukul, P.; Zühlke, S.; Lamshöft, M.; Rosales-Conrado, N.; Spiteller, M. Dissipation and metabolism of (14)C-spiroxamine in soil under laboratory condition. Environ. Pollut. 2010, 158, 1542–1550. DOI:10.1016/j.envpol.2009.12.025.
  • Tayade, S.; Patel, Z. P.; Mutkule, D. S.; Kakde, D. S. Pesticide contamination in food: a review. J. Agric. Vet. Sci. 2013, 6, 7–11.
  • Murali, O.; Mehar, S. K. Bioremediation of heavy metals using spirulina. Int. J. Geol. Earth Environ. Sci. 2014, 4, 244–249.
  • Abdulsalam, S.; Bugaje, I. M.; Adefila, S. S.; Ibrahim, S. Comparison of biostimulation and bioaugmentation for remediation of soil contaminated with spent motor oil. Int. J. Environ. Sci. Technol. 2011, 8, 187–194. DOI:10.1007/BF03326208.
  • Adams, G. O.; Fufeyin, P. T.; Okoro, S. E.; Ehinomen, I. Bioremediation, biostimulation and bioaugmention: a review. Int. J. Environ. Bioremediat. Biodegrad. 2015, 3, 28–39.
  • Kadian, N.; Gupta, A.; Satya, S.; Mehta, R. K.; Malik, A. Biodegradation of herbicide (atrazine) in contaminated soil using various bioprocessed materials. Bioresour. Technol. 2008, 99, 4642–4647. DOI:10.1016/j.biortech.2007.06.064.
  • Vidali, M. Bioremediation. Pure Appl. Chem. 2001, 3, 1163–1172. DOI:10.1351/pac200173071163.
  • Anda, M.; Shamshuddin, J.; Fauziah, C. I.; Omar, S. R. Dissolution of ground basalt and its effect on oxisol chemical properties and cocoa growth. Soil Sci. 2009, 174, 264–271. DOI:10.1097/SS.0b013e3181a56928.
  • Trckova, M.; Matlova, L.; Dvorska, L.; Pavlik, I. Kaolin, bentonite, and zeolites as feed supplements for animals: health advantages and risks. Vet. Med. 2012, 49, 389–399.
  • Wyszkowska, J.; Wyszkowski, M. Role of compost, bentonite and lime in recovering the biochemical equilibrium of diesel oil contaminated soil. Plant Soil Environ. 2011, 52, 505–514. DOI:10.17221/3541-PSE.
  • Wyszkowski, M.; Ziólkowska, A. Role of compost, bentonite and calcium oxide in restricting the effect of soil contamination with petrol and diesel oil on plants. Chemosphere 2009, 74, 860–865.
  • World Reference Base of Soil Resources International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soils Resources Reports; FAO: Rome, Italy, 2014; p 106.
  • Rodrigues, E. T.; Lopes, I.; Pardal, M. Â. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: a review. Environ. Int. 2013, 53, 18–28.
  • Bending, G. D.; Rodriguez-Cruz, M. S.; Lincoln, S. D. Fungicide impacts on microbial communities in soils with contrasting management histories. Chemosphere 2007, 69, 82–88. DOI:10.1016/j.chemosphere.2007.04.042.
  • Muñoz-Leoz, B.; Ruiz-Romera, E.; Antigüedad, I.; Garbisu, C. Tebuconazole application decreases soil microbial biomass and activity. Soil Biol. Biochem. 2011, 43, 2176–2183. DOI:10.1016/j.soilbio.2011.07.001.
  • Ghosh, R. K.; Singh, N. Leaching behaviour of azoxystrobin and metabolites in soil columns. Pest Manag. Sci. 2009, 65, 1009–1014.
  • Rosales-Conrado, N. Hydrolysis study and extraction of spiroxamine from soils of different physico-chemical properties. Chemosphere 2009, 77, 821–828.
  • Dytrtová, J. J.; Jakl, M.; Schröder, D.; Čadková, E.; Komárek, M. Complexation between the fungicide tebuconazole and copper(II) probed by electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 1037–1042. DOI:10.1002/rcm.4957.
  • Yao, Z.; Li, X.; Miao, Y.; Lin, M.; Xu, M.; Wang, Q.; Zhang, H. Simultaneous enantioselective determination of triadimefon and its metabolite triadimenol in edible vegetable oil by gel permeation chromatography and ultraperformance convergence chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 8849–8859. DOI:10.1007/s00216-015-9046-y.
  • Czaban, J.; Czyż, E.; Siebielec, G.; Niedźwiecki, J. Long-lasting effects of bentonite on properties of a sandy soil deprived of the humus layer. Int. Agrophys. 2014, 28, 279–289. DOI:10.2478/intag-2014-0018.
  • Satje, A.; Nelson, P. Bentonite treatments can improve the nutrient and water holding capacity of sugar soils in the wet tropics. Proc. Aust. Soc. Sugar Cane. Technol. 2009, 31, 166–176.
  • He, Y.; Li, D. C.; Velde, B.; Yang, Y. F.; Huang, C. M.; Gong, Z. T.; Zhang, G. L. Clay minerals in a soil chromosequence derived from basalt on Hainan Island, China and its implication for pedogenesis. Geoderma 2008, 14, 206–212. DOI:10.1016/j.geoderma.2008.10.007.
  • Bello, D.; Trasar-Cepeda, C.; Leiros, M. C.; Gil-Sotres, F. Evaluation of various tests for the diagnosis of soil contamination by 2,4,5-trichlorophenol (2,4,5-TCP). Environ. Pollut. 2008, 156, 611–617.
  • Burrows, L. A.; Edwards, C. A. The use of integrated soil microcosms to assess the impact of carbendazim on soil ecosystems. Ecotoxicology 2004, 13, 143–161.
  • Defo, M. A.; Njine, T.; Nola, M.; Beboua, F. S. Microcosm study of the long term effect of endosulfan on enzyme and microbial activities on two agricultural soils of Yaounde-Cameroon. Afr. J. Agric. Res. 2011, 6, 2039–2050.
  • Jastrzębska, E. The effect of chlorpyrifos and teflubenzuron on the enzymatic activity of soil. Pol. J. Environ. Stud. 2011, 20, 903–910.
  • Öhlinger, R. Dehydrogenase activity with the substrate TTC. In Methods in Soil Biology; Schinner, F.; Öhlinger, R.; Kandler, E.; Margesin, R., Eds.; Springer: Berlin, 1996; pp 241–243.
  • Alef, K.; Nannipieri, P. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K.; Nannipieri P., Eds.; Academic Press: London, 1998; pp 316–365.
  • Alef, K.; Nannipieri, P.; Trazar-Capeda, C. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K.; Nannipieri, P., Eds. Academic Press: London, 1998; pp 335–344.
  • Baćmaga, M.; Kucharski, J.; Wyszkowska, J. Microbial and enzymatic activity of soil contaminated with azoxystrobin. Environ. Monit. Assess. 2015, 187, 615.
  • Kaczyńska, G.; Borowik, A.; Wyszkowska, J. Soil dehydrogenases as an indicator of contamination of the environment with petroleum products. Water Air Soil Pollut. 2015, 226, 372.
  • Carter, M. R. In Soil Sampling and Methods of Analysis; Canadian Society of Soil Science; CRC Press: Boca Raton, 1993; p 823.
  • Harris, D. C. Quantitative Chemical Analysis, 7th ed.; WH Freeman and Company, 2006; p 1008.
  • Statistica (data analysis software system), version 12.5, StatSoft Inc., 2015. Available at www.statsoft.com.
  • Burns, R. G.; de Forest, J. L.; Marxsen, J.; Sinsabaugh, R. L.; Stromberger, M. E.; Wallenstein, M. D.; Weintraub, M. N.; Zoppini, A. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol. Biochem. 2013, 58, 216–234. DOI:10.1016/j.soilbio.2012.11.009.
  • Paz-Ferreiro, J.; Fu, S. Biological indices for soil quality evaluation: perspectives and limitations. Land Degrad. Dev. 2016, 27, 14–25. DOI:10.1002/ldr.2262.
  • Kucharski, J.; Tomkiel, M.; Baćmaga, M.; Borowik, A.; Wyszkowska, J. Enzyme activity and microorganisms diversity in soil contaminated with the Boreal 58 WG herbicide. J. Environ. Sci. Health B 2016, 51, 446–454. DOI:10.1080/03601234.2016.1159456.
  • Rao, M. A.; Scelza, R.; Acevedo, F.; Diez, M. C.; Gianfreda, L. Enzymes as useful tools for environmental purposes. Chemosphere 2014, 107, 145–162.
  • Bello, D.; Trasar-Cepeda, C.; Leirós, M. C.; Gil-Sotres, F. Modification of enzymatic activity in soils of contrasting pH contaminated with 2,4-dichlorophenol and 2,4,5-trichlorophenol. Soil Biol. Biochem. 2013, 56, 80–86. DOI:10.1016/j.soilbio.2012.02.011.
  • Tejada, M. Evolution of soil biological properties after addition of glyphosate, diflufenican and glyphosate + diflufenican herbicides. Chemosphere 2009, 76, 365–373. DOI:10.1016/j.chemosphere.2009.03.040.
  • Zhang, Q.; Zhu, L.; Wang, J.; Xie, H.; Wang, J.; Wang, F.; Sun, F. Effects of fomesafen on soil enzyme activity, microbial population, and bacterial community composition. Environ. Monit. Assess. 2014, 186, 2801–2812. DOI:10.1007/s10661-013-3581-9.
  • Baćmaga, M.; Borowik, A.; Kucharski, J.; Tomkiel, M.; Wyszkowska, J. Microbial and enzymatic activity of soil contaminated with a mixture of diflufenican + mesosulfuron-methyl + iodosulfuron-methyl-sodium. Environ. Sci. Pollut. Res. 2015, 22, 643–656. DOI:10.1007/s11356-014-3395-5.
  • Walia, A.; Mehta, P.; Guleria, S.; Chauhan, A.; Shirkot, C. K. Impact of fungicide mancozeb at different application rates on soil microbial populations, soil biological processes and enzyme activities in soil. Sci. World J. 2014, 2014, 1–9. DOI:10.1155/2014/702909.
  • Jastrzębska, E.; Kucharski, J. Dehydrogenases, urease and phosphatases activities of soil contaminated with fungicides. Plant Soil Environ. 2008, 53, 51–57. DOI:10.17221/2296-PSE.
  • Tomkiel, M.; Wyszkowska, J.; Kucharski, J.; Baćmaga, M.; Borowik, A. Response of microorganisms and enzymes to soil contamination with the herbicide successor T 550 SE. Environ. Prot. Eng. 2014, 40, 15–27.
  • Tomkiel, M.; Baćmaga, M.; Wyszkowska, J.; Kucharski, J.; Borowik, A. The effect of carfentrazone-ethyl on soil microorganisms and soil enzymes activity. Arch. Environ. Prot. 2015, 41, 3–10. DOI:10.1515/aep-2015-0025.
  • Tejada, M.; Gómez, I.; Garcia-Martinez, A. M.; Osta, P.; Parrado, J. Effects of prochloraz fungicide on soil enzymatic activities and bacterial communities. Ecotoxicol. Environ. Safe. 2011, 74, 1708–1714. DOI:10.1016/j.ecoenv.2011.04.016.
  • Srinivasulu, M.; Rangaswamy, V. Influence of insecticides alone and in combination with fungicides on enzyme activities in soils. Int. J. Environ. Sci. Technol. 2013, 10, 341–350.
  • Baćmaga, M.; Wyszkowska, J.; Kucharski, J. The effect of the Falcon 460 EC fungicide on soil microbial communities, enzyme activities and plant growth. Ecotoxicology 2016, 25, 1575–1587. DOI:10.1007/s10646-016-1713-z.
  • Baćmaga, M.; Boros, E.; Kucharski, J.; Wyszkowska, J. Enzymatic activity in soil contaminated with the Aurora 40 WG herbicide. Environ. Prot. Eng. 2012, 38, 91–102.
  • Wyszkowska, J.; Borowik, A.; Kucharski, J.; Baćmaga, M.; Tomkiel, M.; Boros-Lajszner, E. The of organic fertilizers on the biochemical properties of soil contaminated with zinc. Plant Soil Environ. 2013, 59, 500–504. DOI:10.17221/537/2013-PSE.
  • Shammshuddin, J.; Anda, N.; Fauziah, C. I.; Omar, S. S. R. Growth of cocoa planted on highly weathered soil as affected by application of basalt and/or compost. Commun. Soil Sci. Plan. 2011, 42, 2751–2766. DOI:10.1080/00103624.2011.622822.
  • Oleszczuk, P.; Jośko, I.; Futa, B.; Pasieczna-Patkowska, S.; Pałys, E.; Kraska, P. Effect of pesticides on microorganisms, enzymatic activity and plant in biochar-amended soil. Geoderma 2014, 214215, 10–18. DOI:10.1016/j.geoderma.2013.10.010.
  • Singh, N.; Singh, S. B. Effect of moisture and compost on fate of azoxystrobin in soils. J Environ. Sci. Health B 2010, 45, 676–681.
  • Bettiol, C.; de Vettori, S.; Minervini, G.; Zuccon, E.; Marchetto, D.; Ghirardini, A. V.; Argese, E. Assessment of phenolic herbicide toxicity and mode of action by different assays. Environ. Sci. Pollut. Res. 2015, 23, 1–11.
  • Joly, P.; Bonnemoy, F.; Besse-Hoggan, P.; Perrière, F.; Crouzet, O.; Cheviron, N.; Mallet, C. Responses of limagne “clay/organic Matter-rich” soil microbial communities to realistic formulated herbicide mixtures, including S-metolachlor, mesotrione, and Nicosulfuron. Water Air Soil Pollut. 2015, 226, 413.
  • Borowik, A.; Wyszkowska, J.; Kucharski, J.; Baćmaga, M.; Tomkiel, M. Response of microorganisms and enzymes to soil contamination with a mixture of terbuthylazine, mesotrione, and S-metolachlor. Environ. Sci. Pollut. Res. Int. 2017, 24, 1910–1925.
  • Wyszkowska, J.; Tomkiel, M.; Baćmaga, M.; Borowik, A.; Kucharski, J. Response of microorganisms and enzymes to soil contamination with a mixture of pethoxamid terbuthylazine. Environ. Earth Sci. 2016, 75, 1285.
  • Wyszkowski, M.; Wyszkowska, J. The effect of soil contamination with cadmium on the growth and chemical composition of spring barley (Hordeum Vulgare L.) and its relationship with the enzymatic activity of soil. Fresen. Environ. Bull. 2009, 18, 1046–1053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.