Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 5
204
Views
9
CrossRef citations to date
0
Altmetric
Articles

Experimental and numerical study of methylparaben decomposition in aqueous solution using the UV/H2O2 process

ORCID Icon, &

References

  • Andersen, A. Cosmetic Ingedient Review Expert Panel (CIR), final amended report on the safety assessment of methylparaben, ethylparaben, propylparaben, isopropylparaben, butylparaben, isobutylparaben, and benzylparaben as used in cosmetic products. Int. J. Toxicol. 2008, 27, 1–82.
  • Tay, K. S.; Rahman, N. A.; Bin Abas, M. R. Ozonation of parabens in aqueous solution: Kinetics and mechanism of degradation. Chemosphere 2010, 81, 1446–1453. doi:10.1016/j.chemosphere.2010.09.004.
  • Bledzka, D.; Gromadzinska, J.; Wasowicz, W. Parabens, from environmental studies to human health. Environ. Int. 2014, 67, 27–42.
  • Kasprzyk-Hordern, B.; Dinsdale, M. R.; Guwy, J. A. Multiresidue methods for the analysis of pharmaceuticals, personal care products and illicit drugs in surface water and wastewater by solid-phase extraction and ultra performance liquid chromatography–electrospray tandem mass spectrometry. Anal. Bioanal. Chem. 2008, 391, 1293–1308. doi:10.1007/s00216-008-1854-x.
  • González-Mariño, I.; Quintana, J. B.; Rodríguez, I.; Cela, R. Evaluation of the occurrence and biodegradation of parabens and halogenated by-products in wastewater by accurate-mass liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS). Water Res. 2011, 45, 6770–6780. doi:10.1016/j.watres.2011.10.027.
  • Peng, X.; Yu, Y.; Tang, C.; Tan, J.; Huang, Q.; Wang, Z. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci. Total Environ. 2008, 397, 158–166. doi:10.1016/j.scitotenv.2008.02.059.
  • Bledzka, D.; Gmurek, M.; Gryglik, M.; Olak, M.; Miller, J. S.; Ledakowicz, S. Photodegradaton advanced, oxidation of endocrine disruptors in aqueous solutions. Catal Today 2014, 151, 125–130. doi:10.1016/j.cattod.2010.03.040.
  • Gmurek, M.; Rossi, A. F.; Martins, R. C.; Quinta-Ferreira, R. M.; Ledakowicz, S. Photodegradation of single and mixture of parabens – Kinetic, by-products identification and cost-efficiency analysis. Chem. Eng. J. 2015, 276, 303–314. doi:10.1016/j.cej.2015.04.093.
  • Soni, M. G.; Carabin, I. G.; Burdock, G. A. Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food Chem. Toxicol. 2005, 43, 985–1015. doi:10.1016/j.fct.2005.01.020.
  • Darbre, P. D.; Aljarrah, A.; Miller, W. R.; Coldham, N. G.; Sauer, M. J.; Pope, G. S. Concentrations of parabens in human breast tumours. J. Appl. Toxicol. 2004, 24, 5–13. doi:10.1002/jat.958.
  • Chen, J.; Ahn, K. C.; Gee, N. A.; Gee, S. J.; Hammock, B. D.; Lasley, B. L. Antiandrogenic properties of parabens and other phenolic containing small molecules in personal care products. Toxicol. Appl. Pharmacol. 2007, 221, 278–284. doi:10.1016/j.taap.2007.03.015.
  • Steter, J. R.; Dionisio, D.; Lanza, M. R. V.; Motheo, A. J. Electrochemical and sono electro chemical processes applied to the degradation of the endocrine disruptor methyl paraben. J. Appl. Electrochem. 2014, 44, 1317–1325. doi:10.1007/s10800-014-0742-7.
  • Steter, J. R.; Rocha, R. S.; Dionisio, D.; Lanza, M. R. V.; Motheo, A. J. Electrochemical oxidation route of methyl paraben on a boron-doped diamond anode. Electrochim. Acta 2014, 117, 127–133. doi:10.1016/j.electacta.2013.11.118.
  • Hernández, L.; Temmink, H.; Zeeman, G.; Buisman, C. J. N. Removal of micropollutants from aerobically treated grey water via ozone and activated carbon. Water Res. 2011, 45, 2887–2896. doi:10.1016/j.watres.2011.03.009.
  • Ayoub, K.; van Hullebusch, E. D.; Cassir, M.; Bermond, A. Application of advanced oxidation processes for TNT removal: A review. J. Hazard. Mater. 2010, 178, 10–28. doi:10.1016/j.jhazmat.2010.02.042.
  • Orak, C.; Atalay, S.; Ersoz, G. Degradation of ethylparaben using photo-fenton-like oxydation over BiFeO3. J. Sci. Technol. A: Appl. Sci. Eng. 2016, 17, 915–925. doi:10.18038/aubtda.279859.
  • Enjarlis, E. Application of coagulation-advanced oxidation process by O3/GAC in the fan belt wastewater treatment. APCBEE Procedia 2014, 9, 145–150. doi:10.1016/j.apcbee.2014.01.026.
  • Wu, Ch; Linden, K. G. Phototransformation of selected organophosphorus pesticides: Roles of hydroxyl and carbonate radicals. Water Res. 2010, 44, 3585–3594. doi:10.1016/j.watres.2010.04.011.
  • Wols, B. A.; Harmsen, D. J. H.; Beerendonk, E. F.; Hofman-Caris, C. H. M. Predicting pharmaceutical degradation by UV (LP)/H2O2 processes: A kinetic model. Chem. Eng. J. 2014, 255, 334–343. doi:10.1016/j.cej.2014.05.088.
  • Kusic, H.; Juretic, D.; Koprivanac, N.; Marin, V.; Božić, A. L. Photooxidation processes for an azo dye in aqueous media: Modeling of degradation kinetic and ecological parameters evaluation. J. Hazard. Mater. 2011, 185, 1558–1568. doi:10.1016/j.jhazmat.2010.10.087.
  • Beltran, F. J.; Ovejero, G.; Acedo, B. Oxidation of atrazine in water by ultraviolet radiation combined with hydrogen peroxide. Water. Res. 1993, 27, 1013–1021. doi:10.1016/0043-1354(93)90065-P.
  • Glaze, W. H.; Lay, Y.; Kang, J. W. Advanced oxidation processes, a kinetic model for the oxidation of 1,2-dibromo-3-chloropropane in water by the combination of hydrogen peroxide and UV radiation. Ind. Eng. Chem. Res. 1995, 34, 2314–2323. doi:10.1021/ie00046a013.
  • Stefan, M. I.; Hoy, A. R.; Bolton, J. R. Kinetics and mechanism of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide. Environ. Sci. Technol. 1996, 30, 2382–2390. doi:10.1021/es950866i.
  • Crittenden, J. C.; Hu, S.; Hand, D. W.; Green, S. A. A kinetic model for H2O2/UV process in a completely mixed batch reactor. Water Res. 1999, 33, 2315–2328. doi:10.1016/S0043-1354(98)00448-5.
  • Song, W.; Ravindran, V.; Pirbazari, M. Process optimization using a kinetic model for the ultraviolet radiation-hydrogen peroxide decomposition of natural and synthetic organic compounds in groundwater. Chem. Eng. Sci. 2008, 63, 3249–3270. doi:10.1016/j.ces.2008.03.024.
  • Rojas, M. R.; Pérez, F.; Whitley, D.; Arnold, R. G.; Sáez, A. E. ; Modeling of advanced oxidation of trace organic contaminants by hydrogen peroxide photolysis and Fenton’s reaction. Ind. Eng. Chem. Res. 2010, 49, 11331–11343. doi:10.1021/ie101592p.
  • Petala, A.; Frontistis, Z.; Antonopoulou, M.; Konstantinou, I.; Kondarides, I. D.; Mantzavinos, D. Kinetics of ethyl paraben degradation by simulated solar radiation in the presence of N-doped TiO2 catalysts. Water Res. 2015, 81, 157–166. doi:10.1016/j.watres.2015.05.056.
  • Zhang, T.; Cheng, L.; Ma, L.; Meng, F.; Arnold, R. G.; Sàez, A. E. Modeling the oxidation of phenolic compounds by hydrogen peroxide photolysis. Chemosphere 2016, 161, 349–357. doi:10.1016/j.chemosphere.2016.06.110.
  • Sanchez-Martin, J.; Beltran-Heredia, J.; Dominguez, J. R. Advanced photochemical degradation of emerging pollutants. J. Water Air Soil Pollut. 2013, 224, 1483–1495. doi:10.1007/s11270-013-1483-7.
  • Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical review of rate constants for reactions of hydrated dielectrons, hydrogen atoms and hydroxyl radicals (OH./O.–) in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. doi:10.1063/1.555805.
  • Christensen, H. S.; Sehested, K.; Corftizan, H. Reaction of hydroxyl radicals with hydrogen peroxide at ambient temperatures. J. Phys. Chem. 1982, 86, 588–1590.
  • Koppenol, W. H.; Butler, J.; Van Leeuwen, J. W. L. The Haber–Weiss cycle. Photochem. Photobiol. 1978, 28, 655–660. doi:10.1111/j.1751-1097.1978.tb06989.x.
  • Weinstein, J.; Benon, H. J.; Bielski, H. J. Kinetics of the interaction of perhydroxyl and superoxide radicals with hydrogen peroxide. The Haber–Weiss reaction. J. Am. Chem. Soc. 1979, 101, 58–62. doi:10.1021/ja00495a010.
  • Draganic, Z. D.; Negron-Mendoza, A.; Sehested, K.; Vujosevic, S. I.; Navarro-Gonzales, R.; Albarran-Sanchez, M. G.; Draganic, I. G. Radiolysis of aqueous solutions of ammonium bicarbonate over a large dose range. Radiat. Phys. Chem. 1991, 38, 317–321. doi:10.1016/1359-0197(91)90100-G.
  • Schested, K.; Rasmussen, O. L.; Fricke, H. Rate constants of OH with HO2, O2– and H2O2+ from hydrogen peroxide formation in pulse-irradiated oxygenated water. J. Phys. Chem. 1968, 72, 626–631. doi:10.1021/j100848a040.
  • Bielski, H. J.; B. H. J.; Cabelli, D. E.; Ravindra, L. A.; Alberta, A. B. Reactivity of perhydroxyl/superoxide radicals in aqueous solution. J. Phys. Chem. Ref. Data 1985, 14, 1041–1100. doi:10.1063/1.555739.
  • Beck, G. Detection of charged intermediate of pulse radiolysis by electrical conductivity measurements. Int. J. Radiat. Phys. Chem. 1969, 1, 361–371. doi:10.1016/0020-7055(69)90033-3.
  • Holeman, J.; Bjergbakke, E.; Sehested, K. The importance of radical-radical reactions in pulse radiolysis of aqueous carbonate/bicarbonate. Proc. Tihany Symp. Radiat. Chem. 1987, 6, 149–153.
  • Eriksen, T. E.; Lind, J.; Merenyi, G. On the acid–base equilibrium of the carbonate radical. Radiat. Phys. Chem. 1985, 26, 197–199. doi:10.1016/0146-5724(85)90185-2.
  • Huie, R. E.; Clifton, C. L. Temperature dependence of the rate constants for reactions of the sulfate radical, SO4–, with anions. J. Phys. Chem. 1990, 94, 8561–8567. doi:10.1021/j100386a015.
  • Perry, R. H.; Green, D. W.; Maloney, J. D. Perry's Chemical Engineers' Handbook, 5th Ed.; McGraw-Hill, New York, 1973; 1700 p.
  • Stumm, W.; Morgan, J. J. Aquatic Chemistry; Prentice-Hall: Engelwood, NJ, 1972.
  • Dickson, A. G. pH scales and proton-transfer reactions in saline media such as sea-water. Geochim. Cosmochim. Acta 1984, 48, 2299–2308. doi:10.1016/0016-7037(84)90225-4.
  • Hofmann, A. F.; Meysman, F. J. R.; Soetaert, K.; Middelburg, J. J. A step-by-step procedure for pH model construction in aquatic systems. Biogeosciences 2008, 5, 227–251.
  • Jacob, S. M.; Dranoff, J. S. Radial scale-up of perfectly mixed photochemical reactors. Chem. Eng. Prog. Symp. Ser. 1966, 62, 47–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.