Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 5
318
Views
12
CrossRef citations to date
0
Altmetric
Articles

Effect on herbicide adsorption of organic forestry waste products used for soil remediation

, , &

References

  • Trolove, S. N.; Reid, J. B. A field growing system to reduce sulphur uptake of a crop grown in a moderately high sulphur soil – preliminary report. Agron. New Zeal. 2003, 32/33, 51–59.
  • Allmaras, R. R.; Kraft, J. M.; Miller, D. E. Effects of soil compaction and incorporated crop residue on root health. Annu. Rev. Phytopathol. 1988, 26, 219–243. doi:10.1146/annurev.py.26.090188.001251.
  • Wilhelm, W. W.; Johnson, J. M. F.; Hatfield, J. L.; Voorhees, W. B.; Linden, D. R. Crop and soil productivity response to corn residue removal: a literature review. Agron. J. 2004, 96(1), 1–17. doi:10.2134/agronj2004.0001.
  • Medina, J.; Monreal, C.; Barea, J. M.; Arriagada, C.; Borie, F.; Cornejo, P. Crop residue stabilization and application to agricultural and degraded soils: a review. Waste Manag. 2015, 42, 41–54. doi:10.1016/j.wasman.2015.04.002.
  • Korentajer, L. A review of the agricultural use of sewage sludge: benefits and potential hazards. Water SA 1991, 17(3), 189–196.
  • Topac, F. O.; Baskaya, H. S.; Alkan, U. Nitrogen mineralization in soils treated with fly ash-amended wastewater sludges. Commun. Soil Sci. Plant Anal. 2008, 39(5–6), 812–823. doi:10.1080/00103620701880867.
  • Aalok, A.; Tripathi, A. K.; Soni, P. Vermicomposting: a better option for organic solid waste management. J. Hum. Ecol. 2008, 24(1), 59–64. doi:10.1080/09709274.2008.11906100.
  • Angulo, J.; Ortega, R.; Martinez, M. M.; Molina, M.; Torres, A. Evaluation of solid and liquid soil organic amendments for agronomic use in Chile. In Int. Sym. Organ. Matter Manag. Compost Use Hort.; Biala, J., Prange, R., Raviv, M., Eds. Int Soc Horticultural Science: Leuven 1, 2014; Vol. 1018, 109–114. doi:10.17660/ActaHortic.2014.1018.8.
  • Hartley, M. J.; Reid, J. B.; Rahman, A.; Springett, J. A. Effect of organic mulches and a residual herbicide on soil bioactivity in an apple orchard. New Zeal. J. Crop Hort. Sci. 1996, 24(2), 183–190. doi:10.1080/01140671.1996.9513951.
  • Splawski, C. E.; Regnier, E. E.; Harrison, S. K.; Bennett, M. A.; Metzger, J. D. Weed suppression in pumpkin by mulches composed of organic municipal waste materials. HortScience 2016, 51(6), 720–726.
  • Akhtar, M.; Alam, M. M. Utilization of waste materials in nematode control: a review. Bioresour. Technol. 1993, 45(1), 1–7. doi:10.1016/0960-8524(93)90134-W.
  • Akhtar, M.; Malik, A. Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresour. Technol. 2000, 74(1), 35–47. doi:10.1016/S0960-8524(99)00154-6.
  • Renco, M. Organic amendments of soil as useful tools of plant parasitic nematodes control. Helminthologia 2013, 50(1), 3–14. doi:10.2478/s11687-013-0101-y.
  • Hwang, J.; Lee, S.; Kim, J. Interpretation and estimation for dynamic mobility of chlorpyrifos in soils containing different organic matters. Environ. Geochem. Health 2015, 37(6), 1017–1027. doi:10.1007/s10653-015-9721-0.
  • Hyvonen, R.; Agren, G. I.; Andren, O. Modelling long-term carbon and nitrogen dynamics in an arable soil receiving organic matter. Ecol. Appl. 1996, 6(4), 1345–1354. doi:10.2307/2269612.
  • Iglesias-Jimenez, E.; Poveda, E.; Sanchez-Martin, M. J.; Sanchez-Camazano, M. Effect of the nature of exogenous organic matter on pesticide sorption by the soil. Arch. Environ. Contam. Toxicol. 1997, 33(2), 117–124. doi:10.1007/s002449900232.
  • Kalbitz, K.; Solinger, S.; Park, J. H.; Michalzik, B.; Matzner, E. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci. 2000, 165(4), 277–304. doi:10.1097/00010694-200004000-00001.
  • Nilsson, K. S.; Hyvonen, R.; Agren, G. I. Using the continuous-quality theory to predict microbial biomass and soil organic carbon following organic amendments. Eur. J. Soil Sci. 2004, 56(3), 397–405. doi:10.1111/j.1365-2389.2004.00677.x.
  • Weber, W. J. Jr.; McGinley, P. M.; Katz, L. E. Sorption phenomena in subsurface systems: concepts, models and effects on contaminant fate and transport. Water Res. 1991, 25(5), 499–528. doi:10.1016/0043-1354(91)90125-A.
  • Liu, W.; Wang, Q.; Yang, W.; Wang, X. Adsorption of acetanilide herbicides on soil and its components: IV. Sorption of acetanilide herbicides on soils and its correlation with soil properties. Pedosphere 2001, 11(3), 217–226.
  • Tomic, Z. P.; Asanin, D. P.; Durovic-Pejcev, R.; Dordevic, A.; Makreski, P. Adsorption of acetochlor herbicide on inorganic- and organic-modified bentonite monitored by mid-infrared spectroscopy and batch adsorption. Spectrosc. Lett. 2015, 48(9), 685–690. doi:10.1080/00387010.2014.962705.
  • Weber, J. B.; Wilkerson, G. G.; Linker, H. M.; Wilcut, J. W.; Leidy, R. B.; Senseman, S.; Witt, W. W.; Barrett, M.; Vencill, W. K.; Shaw, D. R.; et al. A proposal to standardize soil/solution herbicide distribution coefficients. Weed Sci. 2000, 48(1), 75–88. doi:10.1614/0043-1745(2000)048[0075:APTSSS]2.0.CO;2.
  • Taylor, J. P.; Mills, M. S.; Burns, R. G. Sorption and desorption behaviour of acetochlor in surface, subsurface and size-fractionated Soil. Eur. J. Soil Sci. 2004, 55(4), 671–679. doi:10.1111/j.1365-2389.2004.00643.x.
  • Gannon, T. W.; Hixson, A. C.; Keller, K. E.; Weber, J. B.; Knezevic, S. Z.; Yelverton, F. H. Soil properties influence saflufenacil phytotoxicity. Weed Sci. 2014, 62(4), 657–663. doi:10.1614/WS-D-13-00171.1.
  • Rae, J. E.; Cooper, C. S.; Parker, A.; Peters, A. Pesticide sorption onto aquifer sediments. J. Geochem. Explor. 1998, 64(1–3), 263–276. doi:10.1016/S0375-6742(98)00037-5.
  • Gramatica, P.; Di Guardo, A. Screening of pesticides for environmental partitioning tendency. Chemosphere 2002, 47(9), 947–956. doi:10.1016/S0045-6535(02)00007-3.
  • Del Pino, J. N..; Diaz, R. D. Pesticide distribution and movement. Biotherapy 1998, 11(2/3), 69–76. doi:10.1023/A:1007961524517.
  • Close, M. E. Assessment of pesticide contamination of groundwater in New Zealand. New Zeal. J. Mar. Fresh Res. 1993, 27(2), 257–266. doi:10.1080/00288330.1993.9516565.
  • Jaw, C.; Lin, K.; Yen, J.; Wang, Y. Correlations between experimental and predicted equilibrium distribution coefficient of chlorobenzene and chlorophenol compounds in soil-water systems using partial solubility parameters. J. Environ. Sci. Health B 2007, 42(1), 97–105. doi:10.1080/03601230601021025.
  • Klamt, A.; Eckert, F.; Hornig, M.; Beck, M. E.; Bürger, T. Prediction of aqueous solubility of drugs and pesticides with COSMO-RS. J. Comput. Chem. 2002, 23(2), 275–281. doi:10.1002/jcc.1168.
  • Hilal, S. H.; Karickhoff, S. W.; Carreira, L. A. Prediction of the solubility, activity coefficient and liquid/liquid partition coefficient of organic compounds. QSAR Comb. Sci. 2004, 23(9), 709–720. doi:10.1002/qsar.200430866.
  • Konomi, K.; Savabi, M. R.; Shinde, D.; Jayachandran, K.; Nkedi-Kizza, P.; Reed, S. T. Water and atrazine movement in a calcareous compost applied soil during simulated multiple storms events. Water Air Soil Pollut. 2005, 165(1/4), 365–377. doi:10.1007/s11270-005-6569-4.
  • Vogue, P. A.; Kerle, E. A.; Jenkin, J. J. OSU extension pesticide properties database. http://npic.orst.edu/ppdmove.htm. Accessed April 26, 2007. 1994.
  • Wauchope, D. The ARS-USDA pesticide properties database. http://www.ars.usda.gov/Services/docs.htm?docid=14199. Accessed April 26, 2007. 2006.
  • Wang, Q.; Yang, W.; Liu, W. Adsorption of acetanilide herbicides on soils and its correlation with soil properties. Pest. Sci. 1999, 55(11), 1103–1108. doi:10.1002/ps.2780551109.
  • Vasilakoglou, I. B.; Eleftherohorinos, I. G.; Dhima, K. B. Activity, adsorption and mobility of three acetanilide and two new amide herbicides. Weed Res. 2001, 41(6), 535–546. doi:10.1046/j.1365-3180.2001.00256.x.
  • Reddy, K. N.; Singh, M.; Alva, A. K. Sorption and leaching of bromacil and simazine in Florida flatwoods soils. Bull. Environ. Contam. Toxicol. 1992, 48(5), 662–670.
  • Bhandari, A.; Lesan, H. M. Isotherms for atrazine desorption from two surface soils. Environ. Eng. Sci. 2003, 20(3), 257–263. doi:10.1089/109287503321671465.
  • Swarcewicz, M. K.; Muliński, Z.; Zbieć, I. Influence of spray adjuvants on the behavior of trifluralin in the soil. Bull. Environ. Contam. Toxicol. 1998, 60(4), 569–576. doi:10.1007/s001289900663.
  • Weber, J. B.; Wilkerson, G. G.; Reinhardt, C. F. Calculating pesticide sorption coefficients (Kd) using selected soil properties. Chemosphere 2004, 55(2), 157–166. doi:10.1016/j.chemosphere.2003.10.049.
  • Wauchope, R. D.; Buttler, T. M.; Hornsby, A. G.; Agustijn-Beckers, P. W. M.; Burt, J. P. The SCS/ARS/CES pesticide properties database for environmental decision-making. Rev. Environ. Contam. T. 1992, 123, 1–164.
  • Close, M. E.; Pang, L.; Watt, J. P. C.; Vincent, K. W. Leaching of picloram, atrazine and simazine through two New Zealand soils. Geoderma 1998, 84(1/3), 45–63. doi:10.1016/S0016-7061(97)00120-1.
  • Close, M. E.; Watt, J. P. C.; Vincent, K. W. Simulation of picloram, atrazine, and simazine transport through two New Zealand soils using LEACHM. Aust. J. Soil Res. 1999, 37(1), 53–74. doi:10.1071/S97080.
  • Close, M. E.; Pang, L.; Magesan, G. N.; Lee, R.; Green, S. R. Field study of pesticide leaching in an allophanic soil in New Zealand. 2: comparison of simulations from four leaching models. Aust. J. Soil Res. 2003, 41(5), 825–846. doi:10.1071/SR02081.
  • Close, M. E.; Sarmah, A. K.; Flintoft, M. J.; Thomas, J.; Hughes, B. Field and laboratory study of pesticide leaching in a Motupiko silt loam (Nelson) and in a Waikiwi silt loam (Southland). Aust. J. Soil Res. 2006, 44(6), 569–580. doi:10.1071/SR05162.
  • Pang, L.; Close, M. E.; Watt, J. P. C.; Vincent, K. W. Simulation of picloram, atrazine, and simazine leaching through two New Zealand soils and into groundwater using HYDRUS-2D. J. Contam. Hydrol. 2000, 44(1), 19–46. doi:10.1016/S0169-7722(00)00091-7.
  • Sarmah, A. K.; Close, M. E.; Dann, R.; Pang, L.; Green, S. R. Parameter estimation through inverse modelling and comparison of four leaching models using experimental data from two contrasting pesticide field trials in New Zealand. Aust. J. Soil Res. 2006, 44(6), 581–597. doi:10.1071/SR05163.
  • Sarmah, A. K.; Close, M. E.; Pang, L.; Lee, R.; Green, S. R. Field study of pesticide leaching in a Himatangi Sand (Manawatu) and a Kiripaka Bouldery Clay Loam (Northland). 2. Simulation using LEACHM, HYDRUS-1D, GLEAMS, and SPASMO Models. Aust. J. Soil Res. 2005, 43(4), 471–489. doi:10.1071/SR04040.
  • Aislabie, J.; Hunter, D.; Ryburn, J.; Fraser, R.; Northcott, G. L.; Di, H. J. Atrazine mineralisation rates in New Zealand soils are affected by time since atrazine exposure. Aust. J. Soil Res. 2004, 42(7), 783–792. doi:10.1071/SR03096.
  • Ahmad, R.; James, T. K.; Rahman, A.; Holland, P. T. Dissipation of the herbicide clopyralid in an allophanic soil: laboratory and field studies. J. Environ. Sci. Health B Pestic. Contam. Agric. Wastes 2003, 38(6), 683–695. doi:10.1081/PFC-120025553.
  • Ahmad, R.; Rahman, A. Sorption characteristics of atrazine and imazethapyr in soils of New Zealand: importance of independently determined sorption data. J. Agric. Food Chem. 2009, 57(22), 10866–10875. doi:10.1021/jf901365j.
  • Müller, K.; Smith, R. E.; James, T. K.; Holland, P. T.; Rahman, A. Prediction of field atrazine persistence in an allophanic soil with Opus2. Pest. Manage. Sci. 2004, 60(5), 447–458. doi:10.1002/ps.832.
  • Baskaran, S.; Bolan, N. S.; Rahman, A.; Tillman, R. W. Pesticide sorption by allophanic and non-allophanic soils of New Zealand. New Zeal. J. Agri. Res. 1996, 39(2), 297–310. doi:10.1080/00288233.1996.9513189.
  • Cox, L.; Walker, A. Studies of time-dependent sorption of linuron and isoproturon in soils. Chemosphere 1999, 38(12), 2707–2718. doi:10.1016/S0045-6535(98)00453-6.
  • Mamy, L.; Barriuso, E. Desorption and time-dependent sorption of herbicides in soils. Eur. J. Soil Sci. 2007, 58(1), 174–187. doi:10.1111/j.1365-2389.2006.00822.x.
  • Lee, D. Y.; Farmer, W. J.; Aochi, Y. Sorption of napropamide on clay and soil in the presence of dissolved organic matter. J. Environ. Qual. 1990, 19(3), 567–573. doi:10.2134/jeq1990.00472425001900030035x.
  • Pantani, O.; Calamai, L.; Fusi, P. Influence of clay minerals on adsorption and degradation of a sulfonylurea herbicide (cinosulfuron). Appl. Clay Sci. 1994, 8(5), 373–387. doi:10.1016/0169-1317(94)90026-4.
  • Si, Y. B.; Wang, S. Q.; Zhou, D. M.; Chen, H. M. Adsorption and photo-reactivity of bensulfuron-methyl on homoionic clays. Clays Clay Miner. 2004, 52(6), 742–748. doi:10.1346/CCMN.2004.0520609.
  • Dolaptsoglou, C.; Karpouzas, D. G.; Menkissoglu-Spiroudi, U.; Eleftherohorinos, I.; Voudrias, E. A. Influence of different organic amendments on the degradation, metabolism, and adsorption of terbuthylazine. J. Environ. Qual. 2007, 36(6), 1793–1802. doi:10.2134/jeq2006.0388.
  • Jones, D. L.; Edwards-Jones, G.; Murphy, D. V. Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biol. Biochem. 2011, 43(4), 804–813. doi:10.1016/j.soilbio.2010.12.015.
  • Wang, H. L.; Lin, K. D.; Hou, Z. N.; Richardson, B.; Gan, J. Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. J. Soils Sedim. 2010, 10(2), 283–289. doi:10.1007/s11368-009-0111-z.
  • Young, S. New Zealand Novachem Agrichemical Manual 2015. Agrimedia: Christchurch, New Zealand, 2015, 864.
  • Rahman, A.; Sanders, P.; Waller, J. E. Tolerance of asparagus to bromacil – results after five years. In Proc. 39th N. Z. Weed Pest Control Conf., 1986, 200–203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.