Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 6
245
Views
11
CrossRef citations to date
0
Altmetric
Articles

The antiviral activity and cytotoxicity of 15 natural phenolic compounds with previously demonstrated antifungal activity

, & ORCID Icon
Pages 498-504 | Received 31 Oct 2018, Accepted 16 Jan 2019, Published online: 08 Feb 2019

References

  • Gupta, A.; Birhman, K.; Raheja, I.; Kumar, S. S.; Kumar, H. K. Quercetin: a wonder bioflavonoid with therapeutic potential in disease management. Asian Pacific J. Tropical. Dis. 2016, 6, 248–252. DOI: 10.1016/S2222-1808(15)61024-6.
  • Muhammet, A.; Adhithiya, C.; Huajun, J.; Vellareddy, A.; Arthi, K.; Anumantha, G. Quercetin, In Nutraceuticals, Efficacy, Safety, and Toxicity; Gupta, R.C., Ed.; Elsevier: Amsterdam, 2016; 447–452.
  • Chong, J.; Poutaraud, A.; Hugueney, P. Metabolism and roles of stilbenes in plants. Plant. Sci. 2009, 177, 143–155. DOI: 10.1016/j.plantsci.2009.05.012.
  • Nishimura, K.; Matsumoto, R.; Yonezawa, Y.; Nakagawa, H. Effect of quercetin on cell protection via erythropoietin and cell injury of HepG2 cells. Arch. Biochem. Biophys. 2017, 636, 11–16. DOI: 10.1016/j.abb.2017.10.013.
  • National Cancer Institute. SEER Stat Fact Sheets: Prostate. Bethesda, MD: National Cancer Institute, 2017. http://seer.cancer.gov/statfacts/html/prost.html..
  • Lesjak, M.; Beara, I.; Simin, N.; Pintac, D.; Majkic, T.; Bekvalac, K.; Orcic, D.; Mimica, D.; N. antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods. 2018, 40, 68–75. DOI: 10.1016/j.jff.2017.10.047.
  • Lin, J.; Zhou, W. Role of quercetin in the physicochemical properties, antioxidant and antiglycation activities of bread. J. Funct. Foods 2018, 40, 299–306. DOI: 10.1016/j.jff.2017.11.018.
  • Admet, P. Prediction of Absorption, distribution, metabolism, excretion and Toxicity Profiles for Drug Candidates and Environmental Chemicals. http://lmmd.ecust.edu.cn/admetsar1/predict/. Accessed 29 March 2018.
  • Katalinic, V.; Mozina, S. S.; Skroza, D.; Generalic, I.; Abramovic, H.; Milos, M.; Ljubenkov, I. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in dalmatia (Croatia). Food. Chem. 2010, 119, 715–723. DOI: 10.1016/j.foodchem.2009.07.019.
  • Soto-Hernandez, M.; Palma-Tenago, M.; del Rosario Garcia-Mateos, M. Phenolic Compounds, Natural Sources, Importance and Applications. IntechOpenLimited: London, 2017.
  • Tiago Alves, C.; Ferreira, I.; Barros, L.; Silva, S.; Azeredo, J.; Henriques, M. Antifungal activity of phenolic compounds identified in flowers from North Eastern Portugal against Candida species. Future Microbiol. 2014, 9, 139–146. DOI: 10.2217/fmb.13.147.
  • Carvalho, R. S.; Carollo, C. A.; de Magalhães, J. C.; Palumbo, J. M. C.; Boaretto, A. G.; Nunes e Sá, I. C.; Ferraz, A. C.; Lima, W. G.; de Siqueira, J. M.; Ferreira, J. M. S. Antibacterial and antifungal activities of phenolic compound-enriched ethyl acetate fraction from Cochlospermum Regium (mart. Et. Schr.) pilger roots: mechanisms of action and synergism with tannin and gallic acid. South African J. Bot. 2018, 114, 181–187. DOI: 10.1016/j.sajb.2017.11.010.
  • Aragao, E.; de Carvalho, M. G.; Durantini, E. N. Antifungal activity of a novel quercetin derivative bearing a trifluoromethyl group on Candida albicans. Med. Chem. Res. 2012, 21, 2217–2222. DOI: 10.1007/s00044-011-9750-x.
  • Li, Z.-J.; Liu, M.; Dawuti, G.; Dou, Q.; Ma, Y.; Liu, H.G.; Aibai, S. Antifungal activity of gallic acid in vitro and in vivo. Phytother. Res. 2017, 31, 1039–1045. DOI: 10.1002/ptr.5823.
  • Yang, Y.X.; An, M.M.; Jin, Y.S.; Chen, H.S. Chemical constituents from the rhizome of Polygonum Paleaceum and their antifungal activity. J. Asian Natural Prod. Res. 2017, 19, 47–52. DOI: 10.1080/10286020.2016.1196672.
  • Computational Chemistry Laboratory, Modeling Molecular Structures with HyperChem, Profesional, version 8.0.10, http://www.tau.ac.il/∼ephraim/intro2hyp.pdf. Downloaded 02.01.2018.
  • Pearson, R. G. Chemical Hardness. Wiley-VCH Verlag GmbH: Weinheim, Germany, 1997.
  • Petrescu, A.-M.; Putz, M. V.; Ilia, G. Quantitative structure-activity/ecotoxicity relationships (QSAR/QEcoSAR) of a series of phosphonates. Environ. Tox. Pharmacol. 2015, 40, 800–824. DOI: 10.1016/j.etap.2015.08.032.
  • Putz, M. V. Chemical action and chemical bonding. J. Molec. Struct. Theochem. 2009, 900, 64–70. DOI: 10.1016/j.theochem.2008.12.026.
  • Petrescu, A.-M.; Ilia, G. Molecular docking study to evaluate the carcinogenic potential and mammalian toxicity of thiophosphonate pesticides by cluster and discriminant analysis. Environ. Tox. Pharmacol. 2016, 47, 62–78. DOI: 10.1016/j.etap.2016.09.004.
  • Fogh, J.; Trempe, G. New human tumor cell lines. In Human Tumor Cells in Vitro; Fogh, J., Ed.; Springer: New York, NY, 1975; 115–159.
  • Hidalgo, J. I.; Raub, J. T.; Borchardt, T. R. Characterization of the human colon carcinoma cell line (caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 1989, 96, 736–749. DOI: 10.1016/S0016-5085(89)80072-1.
  • Artursson, P. Epithelial transport of drug in cell culture. i: a model for studying the passive diffusion of drugs over intestinal absorbtive (Caco-2) cells. J. Pharma. Sci. 1990, 79, 476–482. DOI: 10.1002/jps.2600790604.
  • Artursson, P.; Karlsson, J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 1991, 175, 880–885. DOI: 10.1016/0006-291X(91)91647-U.
  • Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P. W.; Tang, Y. AdmetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model. 2012, 52, 3099–3105. DOI: 10.1021/ci300367a.
  • Groenhof, G. Introduction to QM/MM simulations. In Biomolecular Simulations: Methods and Protocols, Methods in Molecular Biology; Monticelli, l; Salonen, E., Eds., Springer Science+Business Media: New York, NY, 2013, 43–66.
  • NCSS software, version 12.0.4. https://mail.google.com/mail/u/0/#inbox/1626e060407d3f08. Downloaded 29 March 2018.
  • Carcino Prediction Server. http://ccsipb.lnu.edu.cn/toxicity/CarcinoPred-EL/result/?id= TYxEN5xgZ9ZZ2R6J5Fpj. Accessed 01 February 2018.
  • EPA: ecological risk assessment. https://www.epa.gov/sites/production/files/2014-11/documents/eco_risk_assessment1998.pdf. Accessed 25 January 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.