Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 6
135
Views
5
CrossRef citations to date
0
Altmetric
Articles

Low dose exposure of patulin and protective effect of epicatechin on blood cells in vitro

, ORCID Icon, , , ORCID Icon, ORCID Icon, & show all

References

  • Moake, M. M.; Padilla-Zakour, O. I.; Worobo, R. W. Comprehensive review of patulin control methods in foods. Comp. Rev. Food Sci. Food Saf. 2005, 4, 8–21. DOI:10.1111/j.1541-4337.2005.tb00068.x.
  • Sanzani, S. M.; Reverberi, M.; Punelli, M.; Ippolito, A.; Fanelli, C. Study on the role of patulin on pathogenicity and virulence of Penicillium expansum. Int. J. Food Microbiol. 2012, 153, 323–331.
  • Barkai-Golan, R. Penicillium mycotoxins. In Mycotoxins in Fruits and Vegetables; Barkai-Golan, R., Paster, N., Eds.; Elsevier: Amsterdam, 2008; 160–170.
  • Rychlik, M. Studies on the degradation of the mycotoxin patulin in blood. Int. Nutr. 2005, 29, 61–68.
  • Chalmers, I.; Clarke, M. Commentary: The 1944 Patulin Trial: The first properly controlled multicentre trial conducted under the ages of the British Meducal Research Council. Int. J. Epidemiol. 2004, 33, 253–260. DOI:10.1093/ije/dyh162.
  • Puel, O.; Galtier, P.; Oswald, I. P. Biosynthesis and toxicological effects of patulin. Toxins (Basel) 2010, 2, 613–631.
  • Fribley, A. M.; Cruz, P. G.; Miller, J. R.; Callaghan, M. U.; Cai, P.; Narula, N.; Neubig, R. R.; Showalter, H. D.; Larsen, S. D.; Kirchhoff, P. D.; Larsen, M. J.; Burr, D. A.; Schultz, P. J.; Jacobs, R. R.; Tamayo-Castillo, G.; Ron, D.; Sherman, D. H.; Kaufman, R. J. Complementary cell-based high-throughput screens identify novel modulators of the unfolded protein response. J. Biomol. Screen. 2011, 16, 825–835. DOI:10.1177/1087057111414893.
  • Kwon, O.; Soung, N. K.; Thimmegowda, N. R.; Jeong, S. J.; Jang, J. H.; Moon, D. O.; Chung, J. K.; Lee, K. S.; Kwon, Y. T.; Erikson, R. L.; Ahn, J. S.; Kim, B. Y. Patulin induces colorectal cancer cells apoptosis through EGR-1 dependent ATF3 upregulation. Cell Signal. 2012, 24, 943–950.
  • Ozsoy, N.; Selmanoğlu, G.; Koçkaya, E. A.; Gül, N.; Cebesoy, S. Effect of patulin on the interdigitating dendritic cells (IDCs) of rat thymus. Cell Biochem. Funct. 2008, 26, 192–196.
  • Saxena, N.; Ansari, K. M.; Kumar, R.; Dhawan, A.; Dwivedi, P. D.; Das, M. Patulin causes DNA damage leading to cell cycle arrest and apoptosis through modulation of Bax, p(53) and p(21/WAF1) proteins in skin of mice. Toxicaol Appl. Pharmacol. 2009, 234, 192–201. DOI:10.1016/j.taap.2008.09.033.
  • Wu, T. S.; Liao, Y. C.; Yu, F. Y.; Chang, C. H.; Liu, B. H. Mechanism of patulin-induced apoptosis in human leukemia cells (HL-60). Toxicol. Lett. 2008, 183, 105–111. DOI:10.1016/j.toxlet.2008.09.018.
  • Donmez-Altuntas, H.; Gokalp-Yildiz, P.; Bitgen, N.; Hamurcu, Z. Evaluation of genotoxicity, cytotoxicity and cytostasis in human lymphocytes exposed to patulin by using the cytokinesis-block micronucleus cytome (CBMN Cyt) assay. Mycotoxin Res. 2013, 29, 63–70. DOI:10.1007/s12550-012-0153-8.
  • Ayed-Boussema, I.; Abassi, H.; Bouaziz, C.; Hlima, W. B.; Ayed, Y.; Bacha, H. Antioxidative and antigenotoxic effect of vitamin E against patulin cytotoxicity and genotoxicity in HepG2 cells. Environ. Toxicol. 2013, 28, 299–306. DOI:10.1002/tox.20720.
  • Ferrer, E.; Juan-Garcia, A.; Font, G.; Ruiz, M. J. Reactive oxygen species induced by beauvericin, patulin and zearalenone in CHO-K1 cells. Toxicol. In Vitro 2009, 23, 1504–1509. DOI:10.1016/j.tiv.2009.07.009.
  • Halliwell, B.; Gutteridge, J. M. C. Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol. 1990, 186, 1–85.
  • Hatherill, J. R.; Till, G. O.; Ward, P. A. Mechanisms of oxidant-induced changes in erythrocytes. Agents Actions 1991, 32, 351–358.
  • Amy, M.; Gelasius, M.; Anuraj, U. S.; Grace, N.; George, M.; Richard, D. S. Antioxidant status and acute malaria in children in Kampala Uganda. Am. J. Trop. Med. Hyg. 2001, 65, 115–119.
  • Ferreira, A. L. A.; Machado, P. E. A.; Matsubara, L. S. Lipid peroxidation, antioxidant enzymes and glutathione levels in human erythrocytes exposed to colloidal iron hydroxide in vitro. Braz. J. Med. Biol. Res. 1999, 32, 689–694. DOI:10.1590/S0100-879X1999000600004.
  • Salah, N.; Miller, N. J.; Paganga, G.; Tijburg, L.; Bolwell, G. P.; Rice-Evans, C. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch. Biochem. Biophys. 1995, 322, 339–346. DOI:10.1006/abbi.1995.1473.
  • Quine, S. Q.; Raghu, P. S. Effects of (–)-epicatechin, a flavonoid on lipid peroxidation and antioxidants in streptozotocin- induced diabetic liver, kidney and heart. Pharmacol. Rep. 2005, 57, 610–615.
  • Kähkönen, M. P.; Hopia, A. I.; Vuorela, H. J.; Rauha, J. P.; Pihlaja, K.; Kujala, T. S.; Heinonen, M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. DOI:10.1021/jf990146l.
  • Beers, R. F., Jr.; Sizer, I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952, 195, 133–140.
  • Tvrda, E.; Lukac, N.; Schneidgenova, M.; Lukacova, J.; Szabo, C.; Goc, Z.; Gren, A.; Massanyi, P. Impact of seminal chemical elements on the oxidative balance in bovine seminal plasma and spermatozoa. J. Vet. Med. 2013, 2013, 8. DOI:10.1155/2013/125096.
  • Faldyna, M.; Levá, L.; Knötigová, P.; Toman, M. Lymphocyte subsets in peripheral blood of dogs – A flow cytometric study. Vet. Immunol. Immunopathol. 2001, 82, 23–37. DOI:10.1016/S0165-2427(01)00337-3.
  • Jeklova, E.; Leva, L.; Faldyna, M. Lymphoid organ development in rabbits: Major lymphocyte subsets. Dev. Comp. Immunol. 2007, 31, 632–644.
  • Escoula, L.; More, J.; Baradat, C. The toxins by Byssochlamys nivea westling. I. Acute toxicity of patulin in adult rats and mice. Ann. Rech. Vet. 1977, 8, 41–49.
  • Hayes, A. W.; Phillips, T. D.; Williams, W. L.; Ciegler, A. Acute toxicity of patulin in mice and rats. Toxicology 1979, 13, 91–100.
  • Mahfoud, R.; Maresca, M.; Garmy, N.; Fantini, J. The mycotoxin patulin alters the barrier function of the intestinal epithelium: Mechanism of action of the toxin and protective effects of glutathione. Toxicol. Appl. Pharmacol. 2002, 181, 209–218. DOI:10.1006/taap.2002.9417.
  • McKinley, E. R.; Carlton, W. W.; Boon, G. D. Patulin mycotoxicosis in the rat: Toxicology, pathology and clinical pathology. Food Chem. Toxicol. 1982, 20, 289–300. DOI:10.1016/S0278-6915(82)80295-0.
  • Pfeiffer, E.; Diwald, T. T.; Metzler, M. Patulin reduces glutathione level and enzyme activities in rat liver slices. Mol. Nutr. Food Res. 2005, 49, 329–336. 089 DOI:10.1002/mnfr.200400.
  • Roll, R.; Matthiaschk, G.; Korte, A. Embryotoxicity and mutagenicity of mycotoxins. J. Environ. Pathol. Toxicol. Oncol. 1990, 10, 1–7.
  • Osswald, H.; Frank, H. K.; Komitowski, D.; Winter, H. Long-term testing of patulin administered orally to Sprague-Dawley rats and swiss mice. Food Cosmet. Toxicol. 1978, 16, 243–247.
  • Wichmann, G.; Herbarth, O.; Lehmann, I. The mycotoxins citrinin, gliotoxin, and patulin affect interferon-gamma rather than interleukin-4 production in human blood cells. Environ. Toxicol. 2002, 17, 211–218. DOI:10.1002/tox.10050.
  • Cooray, R.; Kiessling, K. H.; Lindahl-Kiessling, K. The effects of patulin and patulin–cysteine mixtures on DNA synthesis and the frequency of sister-chromatid excanges in human lymphocytes. Food Chem. Toxicol. 1982, 20, 893–898. DOI:10.1016/S0015-6264(82)80224-1.
  • Lee, K. S.; Roschenthaler, R. J. DNA-damaging activity of patulin in Escherichia coli. Appl. Environ. Microbiol. 1986, 52, 1046–1054.
  • Miura, S.; Hasumi, K.; Endo, A. Inhibition of protein prenylation by patulin. FEBS Lett. 1993, 318, 88–90.
  • Moule, Y.; Hatey, F. Mechanism of the in vitro inhibition of transcription by patulin, a mycotoxin from Byssochlamys nivea. FEBS Lett. 1977, 74, 121–125.
  • Liu, B. H.; Wu, T. S.; Yu, F. Y.; Wang, C. H. Mycotoxin patulin activates the p38 kinase and JNK signaling pathways in human embryonic kidney cells. Toxicol. Sci. 2006, 89, 423–430. DOI:10.1093/toxsci/kfj049.
  • Barhoumi, R.; Burghardt, R. C. Kinetic analysis of the chronology of patulin- and gossypol-induced cytotoxicity in vitro. Fundam. Appl. Toxicol. 1996, 30, 290–297.
  • Fujiki, H.; Sueoka, E.; Watanabe, T.; Suganuma, M. Synergistic enhancement of anticancer effects on numerous human cancer cell lines treated with the combination of EGCG, other green tea catechins, and anticancer compounds. J. Cancer Res. Clin. Oncol. 2015, 141, 1511–1522. DOI:10.1007/s00432-014-1899-5.
  • Kim, S. J.; Li, M.; Jeong, C. W.; Bae, H. B.; Kwak, S. H.; Lee, S. H.; Lee, H. J.; Heo, B. H.; Yook, K. B.; Yoo, K. Y. Epigallocatechin-3-gallate, a green tea catechin, protects the heart against regional ischemia-reperfusion injuries through activation of RISK survival pathways in rats. Arch. Pharm. Res. 2014, 7, 1079–1085. DOI:10.1007/s12272-013-0309-x.
  • Kumar, P.; Maurya, P. K. Epigallocatechin-3-gallate protects erythrocyte Ca(2+)- ATPase and Na(+)/K(+)-ATPase against oxidative induced damage during aging in humans. Adv. Pharm. Bull. 2014, 4, 443–447.
  • Maurya, P. K.; Prakash, S. Intracellular uptake of (–)epicatechin by human erythrocytes as a function of human age. Phytother. Res. 2011, 25, 944–946.
  • Maurya, P. K.; Rizvi, S. I. Protective role of tea catechins on erythrocytes subjected to oxidative stress during human aging. Nat. Prod. Res. 2009, 23, 1072–1079. DOI:10.1080/14786410802267643.
  • Rizvi, S. I.; Zaid, M. A.; Anis, R.; Mishra, N. Protective role of tea catechins against oxidation-induced damage of type 2 diabetic erythrocytes. Clin. Exp. Pharmacol. Physiol. 2005, 32, 70–75. DOI:10.1111/j.1440-1681.2005.04160.x.
  • Chan, A. C.; Chow, K. C.; Chiu, D. Interaction of antioxidants and their implication in genetic anemia. Proc. Soc. Exp. Biol. Med. 1999, 222, 274–282.
  • Tsantes, A. E.; Bonovas, S.; Travlou, A.; Sitaras, N. M. Redox imbalance, macrocytosis, and RBC homeostasis. Antioxid. Redox Signal. 2006, 8, 1205–1216.
  • Zbynovska, K.; Petruska, P.; Kalafova, A.; Ondruska, l.; Jurcik, R.; Chrastinova, l.; Tusimova, E.; Kovacik, A.; Capcarova, M. Antioxidant status of rabbits after treatment with epicatechin and patulin. Biologia 2016, 71, 1–9.
  • Davies, K. J. A. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 2000, 50, 279–289.
  • Lu, N.; Chen, P.; Yang, Q.; Peng, Y. Anti- and pro-oxidant effects of (+)-catechin on hemoglobin-induced protein oxidative damage. Toxicol. In Vitro 2011, 25, 833–838. DOI:10.1016/j.tiv.2011.02.003.
  • Schara, M.; Nemec, M.; Falnoga, I.; Kobal, A. B.; Kveder, M.; Svetek, J. The action of mercury on cell membranes. Cell. Mol. Biol. Lett. 2001, 6, 299–304.
  • Kumar, N.; Kant, R.; Maurya, P. K. Concentration-dependent effect of (–) epicatechin in hypertensive patients. Phytother. Res. 2010, 24, 1433–1436.
  • Nielsen, F.; Mikkelsen, B. B.; Nielsen, J. B.; Andersen, H. R.; Grandjean, P. Plasma malondialdehyde as biomarker for oxidative stress: Reference interval and effects of life-style factors. Clin. Chem. 1997, 43, 1209–1214.
  • Al-Malki, A. L.; Moselhy, S. S. Protective effect of vitamin E and epicatechin against nicotine-induced oxidative stress in rats. Toxicol. Ind. Health 2013, 29, 202–208. DOI:10.1177/0748233711430976.
  • Song, E.; Xia, X.; Su, C.; Dong, W.; Xian, Y.; Wang, W.; Song, Y. Hepatotoxicity and genotoxicity of patulin in mice, and its modulation by green tea polyphenols administration. Food Chem. Toxicol. 2014, 71, 122–127.
  • Azam, S.; Hadi, N.; Khan, N. U.; Hadi, S. M. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: Implications for anticancer properties. Toxicol. In Vitro 2004, 18, 555–561. DOI:10.1016/j.tiv.2003.12.012.
  • Escuola, L.; Bourdiol, D.; Linas, M. D.; Recco, P.; Seguela, J. P. enhancing resistance and modulation of humoral immune response to experimental Candida albicans infection by patulin. Mycopathologia 1988, 3, 153–156. DOI:10.1007/BF00436814.
  • Paucod, J. C.; Krivobok, S.; Vidal, D. Immunotoxicity testing of mycotoxins T-2 and patulin on Balb/C mice. Acta Microbiol. Hung. 1990, 37, 331–339.
  • Escuola, L.; Thomsen, M.; Bourdiol, M.; Pipy, B.; Peuriere, S.; Roubinet, S. Patulin immunotoxicology: Effect on phagocyte activation and the cellular and humoral immune system of mice and rabbits. Int. J. Immunopharmacol. 1988, 10, 983–989. DOI:10.1016/0192-0561(88)90045-8.
  • Sharma, R. P. Immunotoxicity of mycotoxins. J. Dairy Sci. 1993, 76, 892–897.
  • Zbynovska, K.; Bovdisova, I.; Kalafova, A.; Ondruska, L.; Jurcik, R.; Chrastinova, L.; Tusimova, E.; Kovacik, A.; Capcarova, M. Negative effect of patulin on rabbit blood and its modulation by epicatechin. In Animal Physiology; Ales Pavlik, Petr Slama, Petr Škarpa, Eds.; Mendel University in Brno: Brno, Czech Republic, 2016; 308–316. ISBN 978-80-7509-416-2.
  • Keblys, M.; Bernhoft, A.; Hofer, C. C.; Morrison, E.; Larsen, H. J. S.; Flaoyen, A. The effects of the Penicillium mycotoxins citrinin, cyclopiazonic acid, Ochratoxin A, patulin, penicillic acid, and roquefortine c on in vitro proliferation of porcine lymphocytes. Mycopathologia 2004, 158, 317–324. DOI:10.1007/s11046-005-5523-8.
  • Se-Young, O.; Mead, P. J.; Sharma, B. V.; Boermans, H. J.; Smith, T. K.; Swamy, H. V. L. N.; Karrow, N. A. Effect of penicillium mycotoxins on the cytokine gene expression, reactive oxygen species production, and phagocytosis of bovine macrophage (BoMacs) function. Toxicol. In Vitro 2015, 30, 446–453. DOI:10.1016/j.tiv.2015.09.017.
  • Llewellyn, G. C.; McCay, J. A.; Brown, R. D.; Musgrove, D. L.; Butterworth, L. F.; Munson, A. E.; White, K. L., Jr. Immunological evaluation of the mycotoxin patulin in female B6C3F1 mice. Food Chem. Toxicol. 1998, 36, 1107–1115. DOI:10.1016/S0278-6915(98)00084-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.