Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 8
287
Views
11
CrossRef citations to date
0
Altmetric
Articles

Inhibition of the antioxidant activity of catalase and superoxide dismutase from Fusarium verticillioides exposed to a Jacquinia macrocarpa antifungal fraction

ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon

References

  • WHO. Evaluation of certain contaminants in food (Eighty-third report of the Joint FAO/WHO expert Committee on Food Additives). WHO Technical Report Series, No. 1002. Food and Agriculture Organization of United States and World Health Organization: Malta, 2017.
  • Yazar, S.; Omurtag, G. Z. Fumonisins, trichothecenes and zearalenone in cereals. Int. J. Mol. Sci. 2008, 9, 2012–2090.
  • Tagne, A.; Amvam-Zollo, P. H.; Fontem, D. A.; Mathur, S. B.; Neergaard, E. Fungicides and essential oils for controlling maize seed-borne Fusarium moniliforme and its transmission into seedlings. World J. Agric. Sci. 2013, 9, 290–297.
  • Tian, J.; Ban, X.; Zeng, H.; He, J.; Chen, Y.; Wang, Y. The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. PLoS One. 2012, 7, e30147.DOI: 10.1371/journal.pone.0030147.
  • Ruiz-Bustos, E.; Velazquez, C.; Garibay-Escobar, A.; García, Z.; Plascencia-Jatomea, M.; Cortez-Rocha, M. O.; Hernández-Martínez, J.; Robles-Zepeda, R. E. Antibacterial and antifungal activities of some Mexican medicinal plants. J. Med. Food 2009, 12, 1398–1402. DOI: 10.1089/jmf.2008.0205.
  • Sharma, R. S.; Mishra, V.; Singh, R.; Seth, N.; Babu, C. R. Antifungal activity of some himalayan medicinal plants and cultivated ornamental species. Fitoterapia 2008, 79, 589–591. DOI: 10.1016/j.fitote.2008.06.004.
  • García-Sosa, K.; Sánchez-Medina, A.; Álvarez, S. L.; Zacchino, S.; Veitch, N. C.; Simá-Polanco, P.; Peña-Rodríguez, L. M. Antifungal activity of sakurasosaponin from the root extract of Jacquinia flammea. Nat. Prod. Res. 2011, 25, 1185–1189. DOI: 10.1080/14786419.2010.511215.
  • Valenzuela-Cota, D. F.; Buitimea-Cantúa, G. V.; Rosas-Burgos, E. C.; Cinco-Moroyoqui, F. J.; Yépiz-Gómez, M. S.; Cortez-Rocha, M. O.; Plascencia-Jatomea, M.; Burgos-Hernández, A. Antifungal effect of Jacquinia macrocarpa plant extract n the growth of Aspergillus flavus, A. parasiticus and Fusarium verticillioides. Rev. Mex. Micol. 2014, 39, 1–11.
  • Buitimea-Cantúa, G. V.; Rosas-Burgos, E. C.; Cinco-Moroyoqui, F. J.; Burgos-Hernández, A.; Plascencia-Jatomea, M.; Cortez-Rocha, M. O.; Gálvez-Ruiz, J. C. Effect of antifungal fractions from the plants Baccharis glutinosa and Jacquinia macrocarpa on chitin and β-1, 3-glucan hydrolysis of maize phytopathogenic fungi and on the fungal β-1, 3-glucanase and chitinase activities. J. Food Saf. 2013, 33, 526–535. DOI: 10.1111/jfs.12085.
  • Akins, R. A. An update on antifungal targets and mechanisms of resistance in Candida albicans. Med. Mycol. 2005, 43, 285–318. DOI: 10.1080/13693780500138971.
  • Villa, N. Y.; Moussatche, P.; Chamberlin, S. G.; Kumar, A.; Lyons, T. J. Phylogenetic and preliminary phenotypic analysis of yeast PAQR receptors: Potential antifungal targets. J. Mol. Evol. 2011, 73, 134–152. DOI: 10.1007/s00239-011-9462-3.
  • Ribeiro, A. B.; Berto, A.; Chisté, R. C.; Freitas, M.; Visentainer, J. V.; Fernandes, E. Bioactive compounds and scavenging capacity of extracts from different parts of Vismia Cauliflora against reactive oxygen and nitrogen species. Pharm. Biol. 2015, 53, 1267–1276. DOI: 10.3109/13880209.2014.974063.
  • Zaccaria, M.; Ludovici, M.; Sanzani, S.; Ippolito, A.; Cigliano, R.; Sanseverino, W.; Scarpari, M.; Scala, V.; Fanelli, C.; Reverberi, M. Menadione-induced oxidative stress re-shapes the oxylipin profile of Aspergillus flavus and its lifestyle. Toxins 2015, 7, 4315–4329. DOI: 10.3390/toxins7104315.
  • De Batista, P. R.; Palacios, R.; Martín, A.; Hernanz, R.; Médici, C. T.; Silva, M. A.; Rossi, E. M.; Aguado, A.; Vassallo, D. V.; Salaices, M.; Alonso, M. J. Toll-like receptor 4 upregulation by angiotensin ii contributes to hypertension and vascular dysfunction through reactive oxygen species production. PLoS One 2014, 9, e104020. DOI: 10.1371/journal.pone.0104020.
  • Ribeiro, T. P.; Fernandes, C.; Melo, K. V.; Ferreira, S. S.; Lessa, J. A.; Franco, R. W.; Schenk, G.; Pereira, M. D.; Horn, A., Jr. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress. Free Radic. Biol. Med. 2015, 80, 67–76. DOI: 10.1016/j.freeradbiomed.2014.12.005.
  • Kavitha, S.; Chandra, T. S. Oxidative stress protection and glutathione metabolism in response to hydrogen peroxide and menadione in riboflavinogenic fungus Ashbya gossypii. Appl. Biochem. Biotechnol. 2014, 174, 2307–2325. DOI: 10.1007/s12010-014-1188-4.
  • Medina-López, C.; Plascencia-Jatomea, M.; Cinco-Moroyoqui, F. J.; Yépiz-Gómez, M. S.; Cortez-Rocha, M. O.; Rosas-Burgos, E. C. Potentiation of antifungal effect of a mixture of two antifungal fractions obtained from Baccharis glutinosa and Jacquinia macrocarpa plants. J. Environ. Sci. Health Part B: Pestic. Contam. Agric. Wastes 2016, 51, 760–768. DOI: 10.1080/03601234.2016.1198641.
  • Davet, P.; Rouxel, F. Detection and Isolation of Soil Fungi. Science Publisher: Enfield, 2000.
  • Kobayashi, D.; Kondo, K.; Uehara, N.; Otokozawa, S.; Tsuji, N.; Yagihashi, A.; Watanabe, N. Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob. Agent Chemother. 2002, 46, 3113–3117. DOI: 10.1128/AAC.46.10.3113-3117.2002.
  • Aebi, H. Catalase. In Methods of Enzymatic Analysis; Bergmeyer, H. U., Ed.; Academic Press Inc.: Weinheim, NY, 1974; 673–680.
  • Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assay and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. DOI: 10.1016/0003-2697(71)90370-8.
  • Meletiadis, J.; Mouton, J. W.; Meis, J. F. G. M.; Bouman, B. A.; Donnelly, J. P.; Verweij, P. E.; Network, E. Colorimetric assay for antifungal susceptibility testing of Aspergillus species. J. Clin. Microbiol. 2001, 39, 3402–3408.
  • SAS Institute, version 8. SAS/STAT® User´s Guide. SAS Institute Inc.: Cary, NC, 2005.
  • Knudsen, J. T.; Stahl, B. Floral odours in the theophrastaceae. Biochem. Syst. Ecol. 1994, 22, 259–268. DOI: 10.1016/0305-1978(94)90099-X.
  • McGaw, L. J.; Jäger, A. K.; van Staden, J.; Houghton, P. J. Antibacterial effects of fatty acids related compounds from plants. S. Afr. J. Bot. 2002, 68, 417–423. DOI: 10.1016/S0254-6299(15)30367-7.
  • Walters, D.; Raynor, L.; Mitchell, A.; Walker, R.; Walker, K. Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathologia 2004, 157, 87–94. DOI: 10.1023/B:MYCO.0000012222.68156.2c.
  • Agoamoorthy, G.; Chandrasekaran, M.; Venkatesalu, V.; Hsu, M. J. Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Braz. J. Microbiol. 2007, 38, 739–742. DOI: 10.1590/S1517-83822007000400028.
  • Pohl, C. H.; Kock, J. L. F.; Thibane, V. S. Antifungal free fatty acids: a review. In Science against Microbial Pathogens: communicating Current Research and Technological Advances. Méndez-Vila, A., Ed.; Formatex Research Center: Badajoz, Spain, 2011; 61–71.
  • Abdelillah, A.; Houcine, B.; Halima, D.; Meriel, C. s.; Imane, Z.; Eddine, S. D.; Abdallah, M.; Daoudi, C. S. Evaluation of antifungal activity of free fatty acids methyl esters fraction isolated from Algerian Linum usitatissimum L. seeds against toxigenic aspergillus. Asian Pac. J. Trop. Biomed. 2013, 3, 443–448. DOI: 10.1016/S2221-1691(13)60094-5.
  • El-Shamy, A. I.; El-Beih, A. A.; Nassar, M. I. Composition and antimicrobial activity of essential oil of Kochia scoparia (L.) Schrad. J. Essent. Oil Bear. Plants 2012, 15, 484–488. DOI: 10.1080/0972060X.2012.10644076.
  • Rizwan, K.; Zubair, M.; Rasool, N.; Riaz, M.; Zia-Ul-Haq, M.; de Feo, V. Phytochemical and biological studies of Agave attenuata. Int. J. Mol. Sci. 2012, 13, 6440–6451. DOI: 10.3390/ijms13056440.
  • Nisar, M.; Ali, S.; Qaisar, M.; Gilani, S. N.; Shah, M. R.; Khan, I.; Ali, G. Antifungal activity of bioactive constituents and bark extracts of Rhododendron arboreum. Bangladesh J. Pharmacol. 2013, 8, 218–222.
  • Lall, N.; Weiganand, O.; Hussein, A. A.; Meyer, J. J. M. Antifungal activity of naphthoquinones and triterpenes isolated from the root bark of Euclea natalensis. S. Afr. J. Bot. 2006, 72, 579–583. DOI: 10.1016/j.sajb.2006.03.005.
  • Semwal, D. K.; Badoni, R.; Semwal, R.; Kothiyal, S. K.; Sing, G. J. P.; Rawat, U. The Genus Stephania (Menispermaceae): Chemical and pharmacological perspectives. J. Ethnopharmacol. 2010, 132, 369–383. DOI: 10.1016/j.jep.2010.08.047.
  • Mbambo, B.; Odhav, B.; Mohanlall, V. Antifungal activity of stigmasterol, sitosterol and ergosterol from Bulbine natalensis Baker (Asphodelaceae). J. Med. Plant Res. 2012, 6, 5135–5141. DOI: 10.5897/JMPR12.151.
  • Gautam, S. S.; Nvneet, Kumar, S.; Chauhan, R. Antimicrobial efficacy of Althaea officianilis Linn. seed extracts and essential oil against respiratory tract pathogens. J. Appl. Pharm. Sci. 2015, 5, 115–119. DOI: 10.7324/JAPS.2015.50921.
  • Hernández-Hernández, A. B.; Alarcón-Aguilar, F. J.; Jiménez-Estrada, M.; Hernández-Portilla, L. B.; Flores-Ortíz, C. M.; Rodríguez-Monroy, M. A.; Canales-Martínez, M. Biological properties and chemical composition of Jatropha neopauciflora Pax. Afr. J. Tradit. Complement. Altern. Med. 2016, 14, 32–42. DOI: 10.21010/ajtcam.v14i1.5.
  • Tripathi, P.; Yami, H.; Shukla, A. K. Evaluation of antifungal activity of artimesia, litsea and mikania essential oils against post-harvest fungal diseases of kiwifruits. Int. J. Curr. Microbial. Appl. Sci. 2016, 5, 19–29. DOI: 10.20546/ijcmas.2016.509.003.
  • Choi, N. H.; Jang, J. Y.; Choi, G. J.; Choi, Y. H.; Jang, K. S.; Nguyen, V. T.; Min, B. S.; Le Dang, Q.; Kim, J. C. Antifungal activity of sterols and dipsacus saponins isolated from Dipsacus Asper roots against phytopathogenic fungi. Pest. Biochem. Physiol. 2017, 141, 103–108. DOI: 10.1016/j.pestbp.2016.12.006.
  • Franco, B. M.; Jiménez-Estrada, M.; Hernández-Hernández, A. B.; Hernández, L. B.; Rosas-López, R.; Durán, A.; Rodríguez-Monroy, M. A.; Canales-Martínez, M. Antimicrobial activity of the fiber produced by “Pochote” Ceiba Aesculifolia Subsp. Afr. J. Trad. Compl. Alt. Med. 2016, 13, 44–53. DOI: 10.4314/ajtcam.v13i3.6.
  • Zhan, W.; Abdel-Rahman, F. H.; Saleh, M. A. Natural resistance of rose petals to microbial attack. J. Environ. Sci. Health Part B: Pestic. Contam. Agric. Wastes 2011, 46, 381–393. DOI: 10.1080/03601234.2011.572502.
  • Romao, S. Therapeutic value of oral supplementation with melon superoxide dismutase and wheat gliadin combination. Nutrition 2015, 31, 430–436. DOI: 10.1016/j.nut.2014.10.006.
  • Howlett, N. G.; Avery, S. V. Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl. Environ. Microbiol. 1977, 63, 2971–2976.
  • Saudagar, P.; Dubey, V. K. Molecular mechanism of in vitro botulin induced apoptosis of Leishmania donovani. Am. J. Trop. Med. Hyg. 2014, 90, 354–360. DOI: 10.4269/ajtmh.13-0320.
  • Li, Y.; Liu, X.; Jiang, D.; Lin, Y.; Wang, Y.; Li, Q.; Liu, L.; Jin, Y. H. Betulin induces reactive oxygen species-dependent apoptosis in human gastric cancer SGC7901 cells. Arch. Pharm. Res. 2016, 39, 1257–1265. DOI: 10.1007/s12272-016-0761-5.
  • Hatanaka, E.; Dermargos, A.; Hirata, A. E.; Ramírez-Vinolo, M. A.; Carpinelli, A. R.; Newsholme, P.; Aguirre-Armelin, H.; R. Oleic, C. Linoleic and linolenic acids increase ROS production by fibroblasts via NADPH oxidase activation. PLoS One 2013, 8, 1–8.
  • Patlevič, P.; Vašková, J.; Švorc, P.; Vaško, L.; Švorc, P. Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr. Med. Res 2016, 5, 250–258. DOI: 10.1016/j.imr.2016.07.004.
  • Spanou, C. I.; Veskoukis, A. S.; Stagos, D.; Liadaki, K.; Aligiannis, N.; Angelis, A.; Skaltsounis, A. L.; Anastasiadi, M.; Haroutounian, S. A.; Kouretas, D. Effects of Greek legume plant extracts on xanthine oxidase, catalase and superoxide dismutase activities. J. Physiol. Biochem. 2012, 68, 37–45. DOI: 10.1007/s13105-011-0117-z.
  • Sznarkowska, A.; Kostecka, A.; Meller, K.; Bielawski, K. P. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget 2017, 8, 15996–16016.
  • Bulmuş, F. G.; Gürsu, M. F.; Muz, M. H.; Yaman, I.; Bulmuş, O.; Sakin, F. Protective effects of alpha-lipoic acid on oleic acid-induced acute lung injury in rats. Balkan Med. J. 2013, 30, 309–314. DOI: 10.5152/balkanmedj.2013.8426.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.