Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 8
347
Views
19
CrossRef citations to date
0
Altmetric
Articles

Comparative assessment of metribuzin sorption efficiency of biochar, hydrochar and vermicompost

, , &

References

  • Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biol. Fert. Soils 2002, 35, 219–230. DOI:10.1007/s00374-002-0466-4.
  • Schimmelpfennig, S.; Müller, C.; Grünhage, L.; Koch, C.; Kammann, C. Biochar, hydrochar and uncarbonized feedstock application to permanent grassland—effects on greenhouse gas emissions and plant growth. Agric. Ecosyst. Environ. 2014, 191, 39–52. DOI:10.1016/j.agee.2014.03.027.
  • Wang, Y.; Xu, Y.; Li, D.; Tang, B.; Man, S.; Jia, Y.; Xu, H. Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress. Sci. Total Environ. 2018, 621, 1057–1065. DOI:10.1016/j.scitotenv.2017.10.121.
  • Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management: Science and Technology. Earthscan, London and Sterling, VA, 2009; 416 p.
  • Hitzl, M.; Corma, A.; Pomares, F.; Renz, M. The Hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass. Catal. Today 2015, 257, 154–159. DOI:10.1016/j.cattod.2014.09.024.
  • Gascó, G.; Paz-Ferreiro, J.; Álvarez, M. L.; Saa, A.; Méndez, A. Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure. Waste Manage. 2018, 79, 395–403. DOI:10.1016/j.wasman.2018.08.015.
  • Manyuchi, M. M.; Whingiri, E. Effect of vermicomposting period, substrate quantity, cow dung composition and their interactions on Eisenia fetida during vermicomposting. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 1021–1028.
  • Garcia-Sanchez, M.; Tausnerova, H.; Hanc, A.; Tlustos, P. Stabilization of different starting materials through vermicomposting in a continuous-feeding system: changes in chemical and biological parameters. Waste Manage. 2017, 62, 33–42.
  • Landgraf, M. D.; da Silva, S. C.; Rezende, M. O. O. Mechanism of metribuzin herbicide sorption by humic acid samples from peat and vermicompost. Anal. Chim. Acta 1998, 368, 155–164. DOI:10.1016/S0003-2670(98)00049-X.
  • Cederlund, H.; Börjesson, E.; Lundberg, D.; Stenström, J. Adsorption of pesticides with different chemical properties to a wood biochar treated with heat and iron. Water Air Soil Pollut. 2017, 227, 203.
  • Chen, B.; Zhou, D.; Zhu, L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 2008, 42, 5137–5143. DOI:10.1021/es8002684.
  • Zhang, X.; Wang, H.; He, L.; Lu, K.; Sarmah, A.; Li, J.; Bolan, N. S.; Pei, J.; Huang, H. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ. Sci. Pollut. Res. 2013, 20, 8472–8483. DOI:10.1007/s11356-013-1659-0.
  • García-Delgado, C.; Alfaro-Barta, I.; Eymar, E. Combination of Biochar Amendment and Mycoremediation for Polycyclic Aromatic Hydrocarbons Immobilization and Biodegradation in Creosote-Contaminated Soil. J. Hazard. Mater. 2015, 285, 259–266. DOI:10.1016/j.jhazmat.2014.12.002.
  • Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. DOI:10.1016/j.chemosphere.2014.12.058.
  • Loffredo, E.; Castellana, G.; Taskin, E. A two-step approach to eliminate pesticides and estrogens from a wastewater and reduce its phytotoxicity: adsorption onto plant-derived materials and fungal degradation. Water Air Soil Pollut. 2016, 227, 1–12.
  • PubChem open chemistry database at the National Institutes of Health (NIH), U. S. National Library of Medicine. Available at https://pubchem.ncbi.nlm.nih.gov/compound/metribuzin
  • Cerejeira, M.; Viana, P.; Batista, S.; Pereira, T.; Silva, E.; Valério, M. J.; Silva, A.; Ferreira, M.; Silva-Fernandes, A. M. Pesticides in Portuguese surface and ground waters. Water Res. 2003, 37, 1055–1063. DOI:10.1016/S0043-1354(01)00462-6.
  • Dores, E. F. G. C.; Carbo, L.; Ribeiro, M. L.; De-Lamonica-Freire, E. M. Pesticide levels in ground and surface waters of primavera do Leste Region, Mato Grosso, Brazil. J. Chromatogr. Sci. 2008, 46, 585–590. DOI:10.1093/chromsci/46.7.585.
  • European Commission. Defining criteria for identifying endocrine disruptors in the context of the implementation of the plant protection products regulation and biocidal products regulation. Available at https://ec.europa.eu/transparency/regdoc/rep/10102/2016/EN/SWD-2016-211-F1-EN-MAIN-PART-6.PDF
  • EPA. Endocrine Disruptor Screening Program Tier 1 Screening Determinations and Associated Data Evaluation Records. Available at https://www.epa.gov/endocrine-disruption/endocrine-disruptor-screening-program-tier-1-screening-determinations-and
  • Li, J. F.; Li, S. J.; Dong, H. P.; Yang, S. S.; Li, Y. M.; Zhong, J. X. Role of alumina and montmorillonite in changing the sorption of herbicides to biochars. J. Agric. Food Chem. 2015, 63, 5740–5746. DOI:10.1021/acs.jafc.5b01654.
  • Essandoh, M.; Wolgemuth, D.; Pittman, C. U.; Jr. Mohan, D.; Mlsna, T. Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents. Environ. Sci. Pollut. Res. 2017, 24, 4577–4590. DOI:10.1007/s11356-016-8188-6.
  • Official methods of analysis of fertilizers set by the Italian government. Available at https://www.gazzettaufficiale.it/eli/gu/2002/09/19/220/sg/pdf
  • Taskin, E.; de Castro Bueno, C.; Allegretta, I.; Terzano, R.; Rosa, A. H.; Loffredo, E. Multianalytical characterization of biochar and hydrochar produced from waste biomasses for environmental and agricultural applications. Chemosphere 2019, 233, 422–430. doi:https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.05.204.
  • Lagergren, S. Zur Theorie Der Sogenannten adsorption gelöster stoffe, kungliga svenska Vetenskapsakademiens. Handlingar 1898, 24, 1–39.
  • Ho, Y. S.; McKay, G. Pseudo-second order model for sorption processes. Process. Biochem. 1999, 34, 451–465. DOI:10.1016/S0032-9592(98)00112-5.
  • White, P. M.; Jr.; Potter, T. L.; Lima, I. M. Sugarcane and pinewood biochar effects on activity and aerobic soil dissipation of metribuzin and pendimethalin. Ind. Crops Prod. 2015, 74, 737–744. DOI:10.1016/j.indcrop.2015.04.022.
  • Loffredo, E.; Taskin, E. Removal of ascertained and suspected endocrine disruptors from aqueous solution using plant-derived materials. Environ. Sci. Pollut. Res. 2017, 24, 19159–19166.
  • Mendes, K. F.; de Sousa, R. N.; Takeshita, V.; Alonso, F. G.; Régo, A. P. J.; Tornisielo, V. L. Cow bone char as a sorbent to increase sorption and decrease mobility of hexazinone, metribuzin, and quinclorac in soil. Geoderma 2019, 343, 40–49. DOI:10.1016/j.geoderma.2019.02.009.
  • Foo, K. Y.; Hameed, B. H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. DOI:10.1016/j.cej.2009.09.013.
  • Mohan, D.; Sarswat, A.; Ok, Y. S.; Pittman, C. U. Jr. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review. Biores. Technol. 2014, 160, 191–202. DOI:10.1016/j.biortech.2014.01.120.
  • Fang, J.; Zhan, L.; Ok, Y. S.; Gao, B. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J. Ind. Eng. Chem. 2018, 57, 15–21. DOI:10.1016/j.jiec.2017.08.026.
  • Eibisch, N.; Schroll, R.; Fuß, R. Effect of pyrochar and hydrochar amendments on the mineralization of the herbicide isoproturon in an agricultural soil. Chemosphere 2015, 134, 528–535. DOI:10.1016/j.chemosphere.2014.11.074.
  • Lopez-Pineiro, A.; Pena, D.; Albarran, A.; Becerra, D.; Sanchez-Llerena, J. Sorption, leaching and persistence of metribuzin in mediterranean soils amended with olive mill waste of different degrees of organic matter maturity. J. Environ. Manage. 2013, 122, 76–84. DOI:10.1016/j.jenvman.2013.03.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.