Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 11
437
Views
13
CrossRef citations to date
0
Altmetric
Articles

Adsorption of glyphosate on Brazilian subtropical soils rich in iron and aluminum oxides

ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Saunders, L.; Pezeshki, R. Glyphosate in Runoff Waters and in the Root-Zone: A Review. Toxics. 2015, 3, 462–480. DOI: 10.3390/toxics3040462.
  • Huang, X.; Pedersen, T.; Fischer, M.; White, R.; Young, T. M. Herbicide Runoff along Highways. 1. Field Observations. Environ. Sci. Technol. 2004, 38, 3263–3271. DOI: 10.1021/es034847h.
  • Tomlin, C. D. S. The Pesticide Manual: A World Compedium; British Crop Protection Council: Farnham, UK, 2000.
  • Vereecken, H. Mobility and Leaching of Glyphosate: A Review. Pest Manag. Sci. 2005, 61, 1139–1151. DOI: 10.1002/ps.1122.
  • Borggaard, O. K.; Gimsing, A. L. Fate of Glyphosate in Soil and the Possibility of Leaching to Ground and Surface Waters: A Review. Pest Manag. Sci. 2008, 456, 441–456. DOI: 10.1002/ps.1512.
  • Dollinger, J.; Dages, C.; Voltz, M. Glyphosate Sorption to Soils and Sediments Predicted by Pedotransfer Functions. Environ. Chem. Lett. 2015, 13, 293–307. DOI: 10.1007/s10311-015-0515-5.
  • De Jonge, H.; De Jonge, L. W. Influence of pH and Solution Composition on the Sorption of Glyphosate and Prochloraz to a Sandy Loam Soil. Chemosphere. 1999, 39, 753–763. DOI: 10.1016/S0045-6535(99)00011-9.
  • Barja, B. C.; Dos Santos Afonso, M. Aminomethylphosphonic Acid and Glyphosate Adsorption onto Goethite: A Comparative Study. Environ. Sci. Technol. 2005, 39, 585–592. DOI: 10.1021/es035055q.
  • Sheals, J.; Sjöberg, S.; Persson, P. Adsorption of Glyphosate on Goethite: Molecular Characterization of Surface Complexes. Environ. Sci. Technol. 2002, 36, 3090–3095. DOI: 10.1021/es010295w.
  • Piccolo, A.; Celano, G.; Conte, P. Adsorption of Glyphosate by Humic Substances. J. Agric. Food Chem. 1996, 44, 2442–2446. DOI: 10.1021/jf950620x.
  • Mazzei, P.; Piccolo, A. Quantitative Evaluation of Noncovalent Interactions between Glyphosate and Dissolved Humic Substances by NMR Spectroscopy. Environ. Sci. Technol. 2012, 46, 5939–5946. DOI: 10.1021/es300265a.
  • Gros, P.; Ahmed, A.; Kühn, O.; Leinweber, P. Glyphosate Binding in Soil as Revealed by Sorption Experiments and Quantum-Chemical Modeling. Sci. Total Environ. 2017, 586, 527–535. DOI: 10.1016/j.scitotenv.2017.02.007.
  • De Gerónimo, E.; Aparicio, V. C.; Costa, J. L. Glyphosate Sorption to Soils of Argentina. Estimation of Affinity Coefficient by Pedotransfer Function. Geoderma. 2018, 322, 140–148. DOI: 10.1016/j.geoderma.2018.02.037.
  • Oliveira Pereira, E. A.; Freitas Melo, V.; Abate, G.; Masini, J. C. Determination of Glyphosate and Aminomethylphosphonic Acid by Sequential-Injection Reversed-Phase Chromatography: method Improvements and Application in Adsorption Studies. Anal. Bioanal. Chem. 2019, 411, 2317–2326. DOI: 10.1007/s00216-019-01672-x.
  • Rigobello-Masini, M.; Masini, J. C. Improvements in the Separation Capabilities of Sequential Injection Chromatography: Determination of Intracellular Dissolved Free Amino Acid Profiles in Three Taxonomic Groups of Microalgae. Phytochem. Anal. 2013, 24, 224–229. DOI: 10.1002/pca.2402.
  • Hanke, D.; Melo, V. d F.; Dieckow, J.; Dick, D. P.; Bognola, I. A. Bognola, Influência da Matéria Orgânica No Diâmetro Médio de Minerais da Fração Argila de Solos Desenvolvidos de Basalto No Sul Do Brasil. Rev. Bras. Ciênc. Solo. 2015, 39, 1611–1622. DOI: 10.1590/01000683rbcs20140655.
  • Watanabe, F. S.; Olsen, S. R. Test of an Ascorbic Acid Method for Determining Phosphorus in Water and NaHCO3 Extracts from Soil. Soil Sci. Soc. Am. J. 1965, 29, 677. DOI: 10.2136/sssaj1965.03615995002900060025x.
  • Galhardo, C. X.; Masini, J. C. Spectrophotometric Determination of Phosphate and Silicate by Sequential Injection Using Molybdenum Blue Chemistry. Anal. Chim. Acta. 2000, 417, 191–200. DOI: 10.1016/S0003-2670(00)00933-8.
  • de Miranda Colombo, S.; Masini, J. C. A Sequential-Injection Reversed-Phase Chromatography Method for Fluorimetric Determination of Glyphosate and Aminomethylphosphonic Acid. Anal. Methods. 2014, 6, 490–496. DOI: 10.1039/C3AY41594E.
  • Ho, Y. S.; McKay, G. The Sorption of Lead(II) Ions on Peat. Water Res. 1999, 33, 578–584. DOI: 10.1016/S0043-1354(98)00207-3.
  • Doǧan, M.; Abak, H.; Alkan, M. Adsorption of Methylene Blue onto Hazelnut Shell: Kinetics, Mechanism and Activation Parameters. J. Hazard. Mater. 2009, 164, 172–181. DOI: 10.1016/j.jhazmat.2008.07.155.
  • Fierro, V.; Torné-Fernández, V.; Montané, D.; Celzard, A. Adsorption of Phenol onto Activated Carbons Having Different Textural and Surface Properties. Microporous Mesoporous Mater. 2008, 111, 276–284. DOI: 10.1016/j.micromeso.2007.08.002.
  • Schwertmann, R. M.; Taylor, U. Iron oxides. In Minerals in Soil Environments, 2nd ed.; Dixon, J. B., Weed, S. B., Eds.; Soil Science Society of America: Madison, 1989; pp 379–438.
  • Masini, J. C.; Abate, G.; Lima, E. C.; Hahn, L. C.; Nakamura, M. S.; Lichtig, J.; Nagatomy, H. R. Comparison of Methodologies for Determination of Carboxylic and Phenolic Groups in Humic Acids. Anal. Chim. Acta. 1998, 364, 223–233. DOI: 10.1016/S0003-2670(98)00045-2.
  • Arroyave, J. M.; Waiman, C. C.; Zanini, G. P.; Avena, M. J. Effect of Humic Acid on the Adsorption/Desorption Behavior of Glyphosate on Goethite. Isotherms and Kinetics. Chemosphere. 2016, 145, 34–41. DOI: 10.1016/j.chemosphere.2015.11.082.
  • Day, G. M.; Hart, B. T.; McKelvie, I. D.; Beckett, R. Influence of Natural Organic Matter on the Sorption of Biocides onto Goethite, II. Glyphosate. Environ. Technol. 1997, 18, 781–794. DOI: 10.1080/09593331808616597.
  • Gerritse, R. G.; Beltran, J.; Hernandez, F. Adsorption of Atrazine, Simazine, and Glyphosate in Soils of the Gnangara Mound, Western Australia. Soil Res. 1996, 34, 599–607. DOI: 10.1071/SR9960599.
  • Curi, N.; Franzmeier, D. P. Toposequence of Oxisols from the Central Plateau of Brazil. Soil. Sci. Soc. Am. J. 1984, 48, 341–346. DOI: 10.2136/sssaj1984.03615995004800020024x.
  • Pignatello, J. J.; Xing, B. Mechanisms of Slow Sorption of Organic Chemicals to Natural Particles. Environ. Sci. Technol. 1996, 30, 1–11. DOI: 10.1021/es940683g.
  • Giles, C. H.; MacEwan, T. H.; Nakhwa, S. N.; Smith, D. Studies in Adsorption. Part XI. A System of Classification of Solution Adsorption Isotherms, and Its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Areas of Solids. J. Chem. Soc. 1960, 786, 3973–3993.
  • Hiera da Cruz, L.; Santana, H.; Zaia, C. T. B. V.; Zaia, D. A. M. Adsorption of Glyphosate on Clays and Soils from Paraná State: Effect of pH and Competitive Adsorption of Phosphate. Braz. Arch. Biol. Technol. 2007, 50, 385–394. DOI: 10.1590/S1516-89132007000300004.
  • Ghafoor, A.; Jarvis, N. J.; Stenström, J. Modelling Pesticide Sorption in the Surface and Subsurface Soils of an Agricultural Catchment. Pest Manag. Sci. 2013, 69, 919–929. DOI: 10.1002/ps.3453.
  • Wang, Y.-J.; Zhou, D.-M.; Sun, R.-J. Effects of Phosphate on the Adsorption of Glyphosate on Three Three Different Types of Chinese Soils. J. Environ. Sci. (China). 2005, 17, 711–715.
  • Gómez Ortiz, A. M.; Okada, E.; Bedmar, F.; Costa, J. L. Sorption and Desorption of Glyphosate in Mollisols and Ultisols Soils of Argentina. Environ. Toxicol. Chem. 2017, 36, 587–2592.
  • Prata, F.; Lavorenti, A.; Regitano, J. B.; Vereecken, H.; Tornisielo, V. L.; Pelissari, A. Glyphosate Behavior in a Rhodic Oxisol under No-Till and Conventional Agricultural Systems. Rev. Bras. Ciênc. Solo. 2005, 29, 61–69. DOI: 10.1590/S0100-06832005000100007.
  • T., di Mauro, E, O.; Urbano, A.; Valezi, D. F.; da Costa, A. C. S.; Zaia, C. T. B. V.; Zaia, D. A. M. Study of Interaction between Glyphosate and Goethite Using Several Methodologies: An Environmental Perspective. Water. Air. Soil Pollut. 2018, 229, 150.
  • Pereira, R. C.; Anizelli, P. R.; Di Mauro, E.; Valezi, D. F.; Carlos, A.; Costa, S.; Zaia, C. T. B. V.; Zaia, D. A. M. The Effect of pH and Ionic Strength on the Adsorption of Glyphosate onto Ferrihydrite. Geochem. Trans. 2019, 20, 1–14. DOI: 10.1186/s12932-019-0063-1.
  • Mendonça, T.; Melo, V. F.; Alleoni, L. R. F.; Schaefer, C. E. G. R.; Michel, R. F. M. Lead Adsorption in the Clay Fraction of Two Soil Profiles from Fildes Peninsula, King George Island. Antarct. Sci. 2013, 25, 389–396. DOI: 10.1017/S0954102012001071.
  • Melo, V. F.; Batista, A. H. Relationship between Heavy Metals and Minerals Extracted from Soil Clay by Standard and Novel Acid Extraction Procedures. Environ. Monit. Assess. 2016, 188, 668.
  • Okada, E.; Costa, J. L.; Bedmar, F. Adsorption and Mobility of Glyphosate in Different Soils under No-till and Conventional Tillage. Geoderma. 2016, 263, 78–85. DOI: 10.1016/j.geoderma.2015.09.009.
  • Sidoli, P.; Baran, N.; Angulo-Jaramillo, R. Glyphosate and AMPA Adsorption in Soils: laboratory Experiments and Pedotransfer Rules. Environ. Sci. Pollut. Res. 2016, 23, 5733–5742. DOI: 10.1007/s11356-015-5796-5.
  • de Miranda Colombo, S.; Masini, J. C. Developing a Fluorimetric Sequential Injection Methodology to Study Adsorption/Desorption of Glyphosate on Soil and Sediment Samples. Microchem. J. 2011, 98, 260–266. DOI: 10.1016/j.microc.2011.02.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.