Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 55, 2020 - Issue 6
168
Views
4
CrossRef citations to date
0
Altmetric
Articles

Dissipation and residues of dimethyl disulfide in tomatoes and soil under greenhouse and open field conditions

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Verdejo-Lucas, S.; Sorribas, F. J.; Ornat, C.; Galeano, M. Evaluating Pochonia chlamydosporia in a Double-Cropping System of Lettuce and Tomato in Plastic Houses Infested with Meloidogyne javanica. Plant Pathol. 2003, 52, 521–528. DOI: 10.1046/j.1365-3059.2003.00873.x.
  • Kayani, M. Z.; Mukhtar, T.; Hussain, M. A.; Ul-Haque, M. I. Infestation Assessment of Root-Knot Nematodes (Meloidogyne Spp.) Associated with Cucumber in the Pothowar Region of Pakistan. Crop Prot. 2013, 47, 49–54. DOI: 10.1016/j.cropro.2013.01.005.
  • Lõpez-Gõmez, M.; Gine, A.; Vela, M. D.; Ornat, C.; Sorribas, F. J.; Talavera, M.; Verdejo-Lucas, S. Damage Functions and Thermal Requirements of Meloidogyne javanica and Meloidogyne incognita on Watermelon. Ann. Appl. Biol. 2014, 165, 466–473. DOI: 10.1111/aab.12154.
  • Kamran, M.; Anwar, S. A.; Javed, N.; Khan, S. A.; Abbas, H.; Iqbal, M. A.; Zohaib, A. The Influence of Meloidogyne incognita Density on Susceptible Tomato. Pak. J. Zool. 2013, 45, 727–732.
  • Adegbite, A. A. Assessment of Yield Loss of Cowpea (Vigna unguiculata L.) Due to Root-Knot Nematode, Meloidogyne incognita under Field Conditions. Electron. J. Environ. Agric. Food Chem. 2011, 10, 2042–2048. DOI: 10.2478/v10045-008-0035-4.
  • Partitioning, E.; Extraction, D. S.; Anastassiades, M.; Lehotay, S. J. Fast and Easy Multiresidue Method Employing Acetonitrile. J. AOAC Int. 2003, 86, 412–431. DOI: 10.1093/jaoac/86.2.412.
  • Eisenback, J. D. Root-knot nematode taxonomic database. Electronic Resources Review, 1999. http://agris.fao.org/agris-search/search.do?recordID=US201300037356 (accessed Dec 9, 2017).
  • Fuster, S.; Beltran, J.; López, F. J.; Hernández, F. Application of Solid Phase Microextraction for the Determination of Soil Fumigants in Water and Soil Samples. J. Sep. Sci. 2005, 28, 98–103. DOI: 10.1002/jssc.200401888.
  • Ren, Y. L.; Padovan, B.; Desmarchelier, J. M. Evaluation of Headspace Solid-Phase Microextraction for Analysis of Phosphine Residues in Wheat. J. AOAC Int. 2012, 95, 549–553. DOI: 10.5740/jaoacint.10-514.
  • EPA. Protection of Stratospheric Ozone: Incorporation of Montreal Protocol Adjustment for a 1999 Interim Reduction in Class I, Group VI Controlled Substances. Fed. Regist. 1999, 64, 9290–9295. https://www.federalregister.gov/documents/1999/06/01/99-13803/protection-of-stratospheric-ozone-incorporation-of-montreal-protocol-adjustment-for-a-1999-interim (accessed Dec 9, 2017).
  • UNEP MBTOC. Report of the Methyl Bromide Technical Options Committee. Nairobi: UNEP, 2002, 43–60. http://hdl.handle.net/20.500.11822/7737 (accessed Dec 9, 2017).
  • Auger, J.; Charles, P. 2003 Biogenic Emission, Biological Origin, and Mode of Action of DMDS, a Natural Ubiquitous Fumigant. In Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions, MBAO, 131–138.
  • Cal, A.; De; Martinez-Treceño, A.; Lopez-Aranda, J. M.; Melgarejo, P. Chemical Alternatives to Methyl Bromide in Spanish Strawberry Nurseries. Plant Dis. 2004, 88, 210–214. DOI: 10.1094/PDIS.2004.88.2.210.
  • Heller, J. J.; Sunder, P.; Charles, P.; Pommier, J. J.; Fritsch, J. Dimethyl Disulfide, a New Alternative to Existing Fumigants on Strawberries in France and Italy. Acta Hortic. 2009, 842, 953–956. DOI: 10.17660/ActaHortic.2009.842.211.
  • Fritsch, J. Dimethyl Disulfide as a New Chemical Potential Alternative to Methyl Bromide in Soil Disinfestation in France. Acta Hortic. 2005, 698, 71–76. DOI: 10.17660/ActaHortic.2005.698.8.
  • Gongwei, Q.; Wenli, L.; Fu, W. Damage and Control of Tomato Root Knot Nematode. North. Hortic. 2006, 2, 132–133. DOI: 10.3969/j.issn.1001-0009.2006.02.070.
  • Li, W.; Mao, J.; Dai, X.; Zhao, X.; Qiao, C.; Zhang, X.; Pu, E. Residue Determination of Triclopyr and Aminopyralid in Pastures and Soil by Gas Chromatography-Electron Capture Detector: Dissipation Pattern under Open Field Conditions. Ecotoxicol. Environ. Saf. 2018, 155, 17–25. DOI: 10.1016/j.ecoenv.2018.02.035.
  • Codex: Alimentarius Commission. Joint FAO/WHO Food Standards Programme. World Health Organization Codex Alimentarius Commission: Procedural manual. Food and Agricultural Organisation: Rome, Italy, 2007. http://www.fao.org/3/a-i3243e.pdf (accessed Dec 9, 2017).
  • SANTE/11813/2017 Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf (accessed June 26, 2019).
  • Hajšlová, J.; Holadová, K.; Kocourek, V.; Poustka, J.; Godula, M.; Cuhra, P.; Kempný, M. Matrix-Induced Effects: A Critical Point in the Gas Chromatographic Analysis of Pesticide Residues. J. Chromatogr. A 1998, 800, 283–295. DOI: 10.1016/S0021-9673(97)01145-X.
  • Stahnke, H.; Kittlaus, S.; Kempe, G.; Hemmerling, C.; Alder, L. The Influence of Electrospray Ion Source Design on Matrix Effects. J. Mass Spectrom. 2012, 47, 875–884. DOI: 10.1002/jms.3047.
  • Jacobsen, R. E.; Fantke, P.; Trapp, S. Analyzing Half-Lives for Pesticide Dissipation in Plants. SAR QSAR Environ. Res. 2015, 26, 325–342. DOI: 10.1080/1062936X.2015.1034772.
  • Bergin, R. 2010 Calculation of Pesticide Half-Life from a Terrestrial Field Dissipation Study. Presented at the Standard Operating Procedure (SOP) METH009.00. California Environmental Protection Agency, Department of Pesticide Regulation: Sacramento, CA. http://cdpr.ca.gov/docs/emon/pubs/sops/meth00901.pdf (accessed Sep 2012).
  • Han, D.; Wang, Q.; Liu, P.; Fang, W.; Yan, D.; Cao, A. Dimethyl Disulphide Residue Analysis and Degradation Kinetics Determination in Soil Using Gas Chromatography–Mass Spectrometry. Int. J. Environ. Anal. Chem. 2016, 96, 694–704. DOI: 10.1080/03067319.2016.1180383.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.