Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 55, 2020 - Issue 12
215
Views
2
CrossRef citations to date
0
Altmetric
Articles

Sulfamethoxazole sorption by cattail and switchgrass roots

ORCID Icon, &

References

  • Clarke, B. O.; Smith, S. R. Review of 'Emerging' Organic Contaminants in Biosolids and Assessment of International Research Priorities for the Agricultural Use of Biosolids. Environ. Int. 2011, 37, 226–247. DOI: 10.1016/j.envint.2010.06.004.
  • Carvalho, P. N.; Basto, M. C. P.; Almeida, C. M. R.; Brix, H. A Review of Plant–Pharmaceutical Interactions: From Uptake and Effects in Crop Plants to Phytoremediation in Constructed Wetlands. Environ. Sci. Pollut. Res. Int. 2014, 21, 11729–11763. DOI: 10.1007/s11356-014-2550-3.
  • Fatta-Kassinos, D.; Kalavrouziotis, I. K.; Koukoulakis, P. H.; Vasquez, M. I. The Risks Associated with Wastewater Reuse and Xenobiotics in the Agroecological Environment. Sci. Total Environ. 2011, 409, 3555–3563. DOI: 10.1016/j.scitotenv.2010.03.036.
  • Hirsch, R.; Ternes, T.; Haberer, K.; Kratz, K.-L. Occurrence of Antibiotics in the Aquatic Environment. Sci. Total Environ. 1999, 225, 109–118. DOI: 10.1016/S0048-9697(98)00337-4.
  • Brown, K. D.; Kulis, J.; Thomson, B.; Chapman, T. H.; Mawhinney, D. B. Occurrence of Antibiotics in Hospital, Residential, and Dairy Effluent, Municipal Wastewater, and the Rio Grande in New Mexico. Sci. Total Environ. 2006, 366, 772–783. DOI: 10.1016/j.scitotenv.2005.10.007.
  • Daughton, C. G.; Ternes, T. A. Pharmaceuticals and Personal Care Products in the Environment: Agents of Subtle Change? Environ. Health Perspect. 1999, 107, 907–938. DOI: 10.2307/3434573.
  • Kolpin, D. W.; Furlong, E. T.; Meyer, M. T.; Thurman, E. M.; Zaugg, S. D.; Barber, L. B.; Buxton, H. T. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999–2000: A National Reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. DOI: 10.1021/es011055j.
  • Miao, X.-S.; Bishay, F.; Chen, M.; Metcalfe, C. D. Occurrence of Antimicrobials in the Final Effluents of Wastewater Treatment Plants in Canada. Environ. Sci. Technol. 2004, 38, 3533–3541. DOI: 10.1021/es030653q.
  • Isidori, M.; Lavorgna, M.; Nardelli, A.; Pascarella, L.; Parrella, A. Toxic and Genotoxic Evaluation of Six Antibiotics on Non-Target Organisms. Sci. Total Environ. 2005, 346, 87–98. DOI: 10.1016/j.scitotenv.2004.11.017.
  • Sabourin, L.; Beck, A.; Duenk, P. W.; Kleywegt, S.; Lapen, D. R.; Li, H.; Metcalfe, C. D.; Payne, M.; Topp, E. Runoff of Pharmaceuticals and Personal Care Products Following Application of Dewatered Municipal Biosolids to an Agricultural Field. Sci. Total Environ. 2009, 407, 4596–4604. DOI: 10.1016/j.scitotenv.2009.04.027.
  • Rostamian, R.; Behnejad, H. A Comparative Adsorption Study of Sulfamethoxazole onto Graphene and Graphene Oxide Nanosheets through Equilibrium, Kinetic and Thermodynamic Modeling. Process Saf. Environ. Prot. 2016, 102, 20–29. DOI: 10.1016/j.psep.2015.12.011.
  • Fram, M. S.; Belitz, K. Occurrence and Concentrations of Pharmaceutical Compounds in Groundwater Used for Public Drinking-Water Supply in California. Sci. Total Environ. 2011, 409, 3409–3417. DOI: 10.1016/j.scitotenv.2011.05.053.
  • Gao, J.; Pedersen, J. A. Adsorption of Sulfonamide Antimicrobial Agents to Clay Minerals. Environ. Sci. Technol. 2005, 39, 9509–9516. DOI: 10.1021/es050644c.
  • Yalkowsky, S. H.; He, Y.; Jain, P. Handbook of Aqueous Solubility Data; CRC Press: Boca Raton, FL, 2010; pp 675–676.
  • Carballa, M.; Omil, F.; Lema, J. M.; Llompart, M.; García-Jares, C.; Rodríguez, I.; Gómez, M.; Ternes, T. Behavior of Pharmaceuticals, Cosmetics and Hormones in a Sewage Treatment Plant. Water Res. 2004, 38, 2918–2926. DOI: 10.1016/j.watres.2004.03.029.
  • Ding, Y.; Zhang, W.; Gu, C.; Xagoraraki, I.; Li, H. Determination of Pharmaceuticals in Biosolids Using Accelerated Solvent Extraction and Liquid Chromatography/Tandem Mass Spectrometry. J. Chromatogr. A 2011, 1218, 10–16. DOI: 10.1016/j.chroma.2010.10.112.
  • Wu, C.; Spongberg, A. L.; Witter, J. D. Sorption and Biodegradation of Selected Antibiotics in Biosolids. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2009, 44, 454–461. DOI: 10.1080/10934520902719779.
  • Ji, L.; Wan, Y.; Zheng, S.; Zhu, D. Adsorption of Tetracycline and Sulfamethoxazole on Crop Residue-Derived Ashes: Implication for the Relative Importance of Black Carbon to Soil Sorption. Environ. Sci. Technol. 2011, 45, 5580–5586. DOI: 10.1021/es200483b.
  • Pandey, V. C.; Bajpai, O.; Singh, N. Energy Crops in Sustainable Phytoremediation. Renew. Sustain. Energy Rev. 2016, 54, 58–73. DOI: 10.1016/j.rser.2015.09.078.
  • Wang, H.; Zhang, H.; Cai, G. An Application of Phytoremediation to River Pollution Remediation. Procedia Environ. Sci. 2011, 10, 1904–1907. DOI: 10.1016/j.proenv.2011.09.298.
  • Ahmed, M. B. M.; Rajapaksha, A. U.; Lim, J. E.; Vu, N. T.; Kim, I. S.; Kang, H. M.; Lee, S. S.; Ok, Y. S. Distribution and Accumulative Pattern of Tetracyclines and Sulfonamides in Edible Vegetables of Cucumber, Tomato, and Lettuce. J. Agric. Food Chem. 2015, 63, 398–405. DOI: 10.1021/jf5034637.
  • Franklin, A. M.; Williams, C. F.; Andrews, D. M.; Woodward, E. E.; Watson, J. E. Uptake of Three Antibiotics and an Antiepileptic Drug by Wheat Crops Spray Irrigated with Wastewater Treatment Plant Effluent. J. Environ. Qual. 2016, 45, 546–554. DOI: 10.2134/jeq2015.05.0257.
  • Kurade, M. B.; Xiong, J.-Q.; Govindwar, S. P.; Roh, H.-S.; Saratale, G. D.; Jeon, B.-H.; Lim, H. Uptake and Biodegradation of Emerging Contaminant Sulfamethoxazole from Aqueous Phase Using Ipomoea Aquatica. Chemosphere 2019, 225, 696–704. DOI: 10.1016/j.chemosphere.2019.03.086.
  • Herklotz, P. A.; Gurung, P.; Vanden Heuvel, B.; Kinney, C. A. Uptake of Human Pharmaceuticals by Plants Grown under Hydroponic Conditions. Chemosphere 2010, 78, 1416–1421. DOI: 10.1016/j.chemosphere.2009.12.048.
  • Kodešová, R.; Klement, A.; Golovko, O.; Fér, M.; Nikodem, A.; Kočárek, M.; Grabic, R. Root Uptake of Atenolol, Sulfamethoxazole and Carbamazepine, and Their Transformation in Three Soils and Four Plants. Environ. Sci. Pollut. Res. Int. 2019, 26, 9876–9891. http://dx.doi.org.uml.idm.oclc.org/10.1007/s11356-019-04333-9. DOI: 10.1007/s11356-019-04333-9.
  • Chitescu, C. L.; Nicolau, A. I.; Stolker, A. A. M. Uptake of Oxytetracycline, Sulfamethoxazole and Ketoconazole from Fertilised Soils by Plants. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2013, 30, 1138–1146. DOI: 10.1080/19440049.2012.725479.
  • Malchi, T.; Maor, Y.; Tadmor, G.; Shenker, M.; Chefetz, B. Irrigation of Root Vegetables with Treated Wastewater: Evaluating Uptake of Pharmaceuticals and the Associated Human Health Risks. Environ. Sci. Technol. 2014, 48, 9325–9333. DOI: 10.1021/es5017894.
  • Dodgen, L. K.; Ueda, A.; Wu, X.; Parker, D. R.; Gan, J. Effect of Transpiration on Plant Accumulation and Translocation of PPCP/EDCs. Environ. Pollut. 2015, 198, 144–153. DOI: 10.1016/j.envpol.2015.01.002.
  • Michelini, L.; Meggio, F.; Rocca, N. L.; Ferro, S.; Ghisi, R. Accumulation and Effects of Sulfadimethoxine in Salix fragilis L. plants: A Preliminary Study to Phytoremediation Purposes. Int. J. Phytoremediat. 2012, 14, 388–402. DOI: 10.1080/15226514.2011.620654.
  • Sas-Nowosielska, A.; Galimska-Stypa, R.; Kucharski, R.; Zielonka, U.; Małkowski, E.; Gray, L. Remediation Aspect of Microbial Changes of Plant Rhizosphere in Mercury Contaminated Soil. Environ. Monit. Assess. 2008, 137, 101–109. DOI: 10.1007/s10661-007-9732-0.
  • Zheng, T.; Sutton, N. B.; de Jager, P.; Grosshans, R.; Munira, S.; Farenhorst, A. Glyphosate (Ab)Sorption by Shoots and Rhizomes of Native versus Hybrid Cattail (Typha). Bull. Environ. Contam. Toxicol. 2017, 99, 595–600. http://dx.doi.org.uml.idm.oclc.org/10.1007/s00128-017-2167-6. DOI: 10.1007/s00128-017-2167-6.
  • Dushenkov, V.; Kumar, P. B.; Motto, H.; Raskin, I. Rhizofiltration: The Use of Plants to Remove Heavy Metals from Aqueous Streams. Environ. Sci. Technol. 1995, 29, 1239–1245. DOI: 10.1021/es00005a015.
  • Wang, S.; Wang, H. Adsorption Behavior of Antibiotic in Soil Environment: A Critical Review. Front. Environ. Sci. Eng. 2015, 9, 565–574. DOI: 10.1007/s11783-015-0801-2.
  • Banerjee, S.; Chattopadhyaya, M. C. Adsorption Characteristics for the Removal of a Toxic Dye, Tartrazine from Aqueous Solutions by a Low-Cost Agricultural by-Product. Arab. J. Chem. 2017, 10, S1629–S1638. DOI: 10.1016/j.arabjc.2013.06.005.
  • Albero, B.; Tadeo, J. L.; Escario, M.; Miguel, E.; Pérez, R. A. Persistence and Availability of Veterinary Antibiotics in Soil and Soil–Manure Systems. Sci. Total Environ. 2018, 643, 1562–1570. DOI: 10.1016/j.scitotenv.2018.06.314.
  • Salt, D. E.; Smith, R. D.; Raskin, D. S. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 643–668. DOI: 10.1146/annurev.arplant.49.1.643.
  • Jeke, N. N.; Zvomuya, F.; Cicek, N.; Ross, L.; Badiou, P. Biomass, Nutrient, and Trace Element Accumulation and Partitioning in Cattail (L.) during Wetland Phytoremediation of Municipal Biosolids. J. Environ. Qual. 2015, 44, 1541–1549. DOI: 10.2134/jeq2015.02.0064.
  • Dzantor, E. K.; Chekol, T.; Vough, L. R. Feasibility of Using Forage Grasses and Legumes for Phytoremediation of Organic Pollutants. J. Environ. Sci. Health Part A 2000, 35, 1645–1661. DOI: 10.1080/10934520009377061.
  • OECD. Guideline for the Testing of Chemicals 106: Adsorption–Desorption Using A Batch Equilibrium Method [Online]. 2000, 1–45. 10.1787/20745753 (accessed Aug 15, 2016).
  • Matouq, M.; Jildeh, N.; Qtaishat, M.; Hindiyeh, M.; Al Syouf, M. Q. The Adsorption Kinetics and Modeling for Heavy Metals Removal from Wastewater by Moringa Pods. J. Environ. Chem. Eng. 2015, 3, 775–784. DOI: 10.1016/j.jece.2015.03.027.
  • Ho, Y. S.; Mckay, G. Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Process Saf. Environ. 1998, 76, 183–191. DOI: 10.1205/095758298529326.
  • Guo, S.; Li, W.; Zhang, L.; Peng, J.; Xia, H.; Zhang, S. Kinetics and Equilibrium Adsorption Study of Lead (II) onto the Low-Cost Adsorbent—Eupatorium Adenophorum Spreng. Process Saf. Environ. 2009, 87, 343–351. DOI: 10.1016/j.psep.2009.06.003.
  • SAS Institute. SAS/STAT 9.4 User’s Guide; SAS Institute Inc.: Cary, NC. 2013.
  • Palacio, S.; Aitkenhead, M.; Escudero, A.; Montserrat-Martí, G.; Maestro, M.; Robertson, A. H. J. Gypsophile Chemistry Unveiled: Fourier Transform Infrared (FTIR) Spectroscopy Provides New Insight into Plant Adaptations to Gypsum Soils. PLoS One. 2014, 9, e107285. DOI: 10.1371/journal.pone.0107285.
  • Cocozza, C.; D’Orazio, V.; Miano, T. M.; Shotyk, W. Characterization of Solid and Aqueous Phases of a Peat Bog Profile Using Molecular fluorescence Spectroscopy, ESR and FT-IR, and Comparison with Physical Properties. Org. Geochem. 2003, 34, 49–60.
  • Artz, R. R. E.; Chapman, S. J.; Jean Robertson, A. H.; Potts, J. M.; Laggoun-Défarge, F.; Gogo, S.; Comont, L.; Disnar, J.-R.; Francez, A.-J. FTIR Spectroscopy Can Be Used as a Screening Tool for Organic Matter Quality in Regenerating Cutover Peatlands. Soil Biol. Biochem. 2008, 40, 515–527. DOI: 10.1016/j.soilbio.2007.09.019.
  • Shi, J.; Xing, D.; Lia, J. FTIR Studies of the Changes in Wood Chemistry from Wood Forming Tissue Under Inclined Treatment. Energy Proced. 2012, 16, 758–762. DOI: 10.1016/j.egypro.2012.01.122.
  • Smidt, E.; Böhm, K.; Schwanninger, M. The Application of FT-IR Spectroscopy in Waste Management. In Fourier Transforms – New Analytical Approaches and FTIR Strategies; Nikolic G., Ed; InTech: Rijeka, Croatia, 2011.
  • Sravan Kumar, S.; Manoj, P.; Giridhar, P. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis, Chlorophyll Content and Antioxidant Properties of Native and Defatted Foliage of Green Leafy Vegetables. J. Food Sci. Technol. 2015, 52, 8131–8139. DOI: 10.1007/s13197-015-1959-0.
  • Li, Y.; Du, Q.; Wang, X.; Zhang, P.; Wang, D.; Wang, Z.; Xia, Y. Removal of Lead from Aqueous Solution by Activated Carbon Prepared from Enteromorpha Prolifera by Zinc Chloride Activation. J. Hazard. Mater. 2010, 183, 583–589. DOI: 10.1016/j.jhazmat.2010.07.063.
  • Liu, X.; Lu, S.; Liu, Y.; Meng, W.; Zheng, B. Adsorption of Sulfamethoxazole (SMZ) and Ciprofloxacin (CIP) by Humic Acid (HA): Characteristics and Mechanism. RSC Adv. 2017, 7, 50449–50458. DOI: 10.1039/C7RA06231A.
  • Açıkyıldız, M.; Gürses, A.; Güneş, K.; Yalvaç, D. A Comparative Examination of the Adsorption Mechanism of an Anionic Textile Dye (RBY 3GL) onto the Powdered Activated Carbon (PAC) Using Various the Isotherm Models and Kinetics Equations with Linear and Non-Linear Methods. Appl. Surf. Sci. 2015, 354, 279–284. DOI: 10.1016/j.apsusc.2015.07.021.
  • Pan, B.; Xing, B. Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes. Environ. Sci. Technol. 2008, 42, 9005–9013. DOI: 10.1021/es801777n.
  • Zhang, D.; Pan, B.; Zhang, H.; Ning, P.; Xing, B. Contribution of Different Sulfamethoxazole Species to Their Overall Adsorption on Functionalized Carbon Nanotubes. Environ. Sci. Technol. 2010, 44, 3806–3811. DOI: 10.1021/es903851q.
  • Zheng, H.; Wang, Z.; Zhao, J.; Herbert, S.; Xing, B. Sorption of Antibiotic Sulfamethoxazole Varies with Biochars Produced at Different Temperatures. Environ. Pollut. 2013, 181, 60–67. DOI: 10.1016/j.envpol.2013.05.056.
  • Iatrou, E. I.; Gatidou, G.; Damalas, D.; Thomaidis, N. S.; Stasinakis, A. S. Fate of Antimicrobials in Duckweed Lemna Minor Wastewater Treatment Systems. J. Hazard. Mater. 2017, 330, 116–126. DOI: 10.1016/j.jhazmat.2017.02.005.
  • Teixidó, M.; Pignatello, J. J.; Beltrán, J. L.; Granados, M.; Peccia, J. Speciation of the Ionizable Antibiotic Sulfamethazine on Black Carbon (Biochar). Environ. Sci. Technol. 2011, 45, 10020–10027. DOI: 10.1021/es202487h.
  • Xu, B.; Liu, F.; Brookes, P. C.; Xu, J. The Sorption Kinetics and Isotherms of Sulfamethoxazole with Polyethylene Microplastics. Mar. Pollut. Bull. 2018, 131, 191–196. DOI: 10.1016/j.marpolbul.2018.04.027.
  • Miraboutalebi, S. M.; Nikouzad, S. K.; Peydayesh, M.; Allahgholi, N.; Vafajoo, L.; McKay, G. Methylene Blue Adsorption via Maize Silk Powder: Kinetic, Equilibrium, Thermodynamic Studies and Residual Error Analysis. Process Saf. Environ. 2017, 106, 191–202. DOI: 10.1016/j.psep.2017.01.010.
  • Desta, M. B. Batch Sorption Experiments: Langmuir and Freundlich Isotherm Studies for the Adsorption of Textile Metal Ions onto Teff Straw (Eragrostis Tef) Agricultural Waste. J. Thermodyn. 2013, 2013, 1–6. DOI: 10.1155/2013/375830.
  • Ahsan, M. A.; Islam, M. T.; Hernandez, C.; Castro, E.; Katla, S. K.; Kim, H.; Lin, Y.; Curry, M. L.; Gardea-Torresdey, J.; Noveron, J. C. Biomass Conversion of Saw Dust to a Functionalized Carbonaceous Materials for the Removal of Tetracycline, Sulfamethoxazole and Bisphenol a from Water. J. Environ. Chem. Eng. 2018, 6, 4329–4338. DOI: 10.1016/j.jece.2018.06.040.
  • Chuang, Y.-H.; Liu, C.-H.; Sallach, J. B.; Hammerschmidt, R.; Zhang, W.; Boyd, S. A.; Li, H. Mechanistic Study on Uptake and Transport of Pharmaceuticals in Lettuce from Water. Environ. Int. 2019, 131, 104976. DOI: 10.1016/j.envint.2019.104976.
  • Zhao, H.; Liu, X.; Cao, Z.; Zhan, Y.; Shi, X.; Yang, Y.; Zhou, J.; Xu, J. Adsorption Behavior and Mechanism of Chloramphenicols, Sulfonamides, and Non-Antibiotic Pharmaceuticals on Multi-Walled Carbon Nanotubes. J. Hazard. Mater. 2016, 310, 235–245. DOI: 10.1016/j.jhazmat.2016.02.045.
  • Guibal, E.; McCarrick, P.; Tobin, J. M. Comparison of the Sorption of Anionic Dyes on Activated Carbon and Chitosan Derivatives from Dilute Solutions. Sep. Sci. Technol. 2003, 38, 3049–3073. DOI: 10.1081/SS-120022586.
  • Sandoval‐Flores, G.; Alvarado‐Reyna, S.; Elvir‐Padilla, L. G.; Mendoza‐Castillo, D. I.; Reynel‐Avila, H. E.; Bonilla‐Petriciolet, A. Kinetics, Thermodynamics, and Competitive Adsorption of Heavy Metals from Water Using Orange Biomass. Water Environ. Res. 2018, 90, 2114–2125. 10.2175/106143017X15131012188321.
  • Kulkarni, M. R.; Revanth, T.; Acharya, A.; Bhat, P. Removal of Crystal Violet Dye from Aqueous Solution Using Water Hyacinth: Equilibrium, Kinetics and Thermodynamics Study. Resour. Effic. Technol. 2017, 3, 71–77. DOI: 10.1016/j.reffit.2017.01.009.
  • Li, X.; Zhou, X.; Mu, J.; Lu, L.; Han, D.; Lu, C.; Wang, M. Thermodynamics and Kinetics of p -Aminophenol Adsorption on Poly(Aryl Ether Ketone) Containing Pendant Carboxyl Groups. J. Chem. Eng. Data 2011, 56, 4274–4277. DOI: 10.1021/je2009297.
  • Errais, E.; Duplay, J.; Darragi, F.; M'Rabet, I.; Aubert, A.; Huber, F.; Morvan, G. Efficient Anionic Dye Adsorption on Natural Untreated Clay: kinetic Study and Thermodynamic Parameters. Desalination 2011, 275, 74–81. DOI: 10.1016/j.desal.2011.02.031.
  • Durnie, W.; Marco, R. D.; Jefferson, A.; Kinsella, B. Development of a Structure–Activity Relationship for Oil Field Corrosion Inhibitors. J. Electrochem. Soc. 1999, 146, 1751–1756. DOI: 10.1149/1.1391837.
  • Aksu, Z. Equilibrium and Kinetic Modelling of Cadmium (II) Biosorption by c. Vulgaris in a Batch System: Effect of Temperature. Sep. Purif. Technol. 2001, 21, 285–294. DOI: 10.1016/S1383-5866(00)00212-4.
  • Karaoğlu, M. H.; Zor, Ş.; Uğurlu, M. Biosorption of Cr (III) from Solutions Using Vineyard Pruning Waste. Chem. Eng. J. 2010, 159, 98–106. DOI: 10.1016/j.cej.2010.02.047.
  • Sparks, D. L. Kinetics of Soil Chemical Processes. In Application of Chemical Kinetics to Soil Chemical Reactions; Sparks, D. L., Ed.; The California Academic Press LLC: California, 1989; pp 4–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.