Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 56, 2021 - Issue 2
253
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Soil dissipation of sugarcane billet seed treatment fungicides and insecticide using QuEChERS and HPLC

ORCID Icon, , &

References

  • American Sugar Cane League of the U.S.A. http://www.amscl.org/industry-info (accessed June 18, 2020).
  • Shaner, D. L.; Krutz, L. J.; Henry, W. B.; Hanson, B. D.; Poteet, M. D.; Rainbolt, C. R. Sugarcane Soils Exhibit Enhanced Atrazine Degradation and Cross Adaption to Other s-Triazines. J. Am. Soc. Sugar Cane Technol. 2010, 30, 1–10.
  • White, P. M. Jr.; Potter, T. L.; Lima, I. M. Sugarcane and Pinewood Biochar Effects on Activity and Aerobic Soil Dissipation of Metribuzin and Pendimethalin. Indus. Crops Products 2015, 74, 737–744. DOI: 10.1016/j.indcrop.2015.04.022.
  • Qian, Y.; Matsumoto, G.; Liu, X.; Li, S. Dissipation, Occurrence, and Risk Assessment of a Phenylurea Herbicide Tebuthiuron in Sugarcane and Aquatic Ecosystems in South China. Environ. Pollut. 2017, 277, 389–396.
  • Tandon, S.; Pant, R. Kinetics of Diuron under Aerobic Condition and Residue Analysis in Sugarcane under Subtropical Field Conditions. Environ. Technol. 2019, 40, 86–93. DOI: 10.1080/09593330.2017.1380709.
  • Kah, M.; Beulke, S.; Brown, C. D. Factors Influencing Degradation of Pesticides in Soil. J. Agric. Food Chem. 2007, 55, 4487–4492. DOI: 10.1021/jf0635356.
  • Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. http://websoilsurvey.sc.egov.usda.gov/ (accessed November 18, 2020).
  • Hoy, J. W.; Richard, C.; Jackson, W.; Waguespack, H. L. Jr. Effects of Cultivars, Fungicides, and Fertilization at Planting on Yields Obtained from Whole Stalk and Billet Planting in Louisiana. J. Am. Soc. Sugar Cane Technol. 2004, 24, 70–80.
  • Vuyyuru, M.; Sandhu, H. S.; McCray, J. M.; Raid, R. N. Effects of Soil-Applied Fungicides on Sugarcane Root and Shoot Growth, Rhizosphere Microbial Communities, and Nutrient Uptake. Agronomy 2018, 8, 223. DOI: 10.3390/agronomy8100223.
  • Bhuiyan, S. A.; Croft, B. J.; Tucker, G. R. New Method of Controlling Sugarcane Smut Using Flutriafol Fungicide. Plant Dis. 2015, 99, 1367–1373. DOI: 10.1094/PDIS-07-14-0768-RE.
  • Larsen, N. A.; Nuessly, G. S. Effectiveness of Reduced Rates of Insecticides for the Control of Melanotus communis (Coleoptera: Elateridae) in Sugarcane. Florida Entomologist 2009, 92, 629–634. DOI: 10.1653/024.092.0416.
  • Cherry, R.; Nuessly, G. S. Repellency of the Biopesticide, Azadirachtin, to Wireworms (Coleopthera: Elateridae). Florida Entomologist 2010, 93, 52–55. DOI: 10.1653/024.093.0107.
  • Bailey, R. A. Possibilities for the Control of Sugarcane Smut (Ustilago Scitaminea) with Fungicides. Proc. South African Sugar Technol. Assoc. 1979, 137–142.
  • Bailey, R. A. The Effect of Soil and Seed Cane Applications of Triadimefon on the Incidence of Sugarcane Smut (Ustilago Scitaminea). Proc. South African Sugar Technol. Assoc. 1983, 99–104.
  • White, P. M. Jr., Hoy, J. W.; Gravois, K. A.; Waguespack, H. J.; Webber, C. L. III, Chemical Treatments Improve Billet-Planted Cane Growth and Crop Yields under Temperate Climatic Conditions. J. Am. Soc. Sugar Cane Technol. 2019, 39, 12–24.
  • Bhuiyan, S. A.; Croft, B. J.; James, R. S.; Cox, M. C. Laboratory and Field Evaluation of Fungicides for the Management of Sugarcane Smut Caused by Sporisorium scitamineum in Seedcane. Australasian Plant Pathol. 2012, 41, 591–599. DOI: 10.1007/s13313-012-0139-1.
  • Fulcher, J.; Wayment, D. G.; White, P. M. Jr.; Webber, C. L. III, Pyraclostrobin Wash-off from Sugarcane Leaves and Aerobic Dissipation in Agricultural Soil. J. Agric. Food Chem. 2014, 62, 2141–2146. DOI: 10.1021/jf405506p.
  • Mehlich, A. Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. DOI: 10.1080/00103628409367568.
  • Payá, P.; Anastassiades, M.; Mack, D.; Sigalova, I.; Tasdelen, B.; Oliva, J.; Barba, A. Analysis of Pesticide Residues Using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) Pesticide Multiresidue Method in Combination with Gas and Liquid Chromatography and Tandem Mass Spectrometric Detection. Anal. Bioanal. Chem. 2007, 389, 1697–1714. DOI: 10.1007/s00216-007-1610-7.
  • Garrison, A. W.; Avants, J. K.; Miller, R. D. Loss of Propiconazole and Its Four Stereoisomers from the Water Phase of Two Soil-Water Slurries as Measured by Capillary Electrophoresis. Int. J. Environ. Res. Public Health 2011, 8, 3453–3467. DOI: 10.3390/ijerph8083453.
  • FOCUS. Guidance document on estimating persistence and degradation kinetics from environmental fate studies on pesticides in EU registration. Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005, version 2.0, June 2006.
  • Gustafson, D.; Holden, L. Nonlinear pesticide dissipation in soil: A new model based on spatial variability. Environ. Sci. Technol. 1990, 24, 1032–1038.
  • Bending, G. D.; Lincoln, S. D.; Edmondson, R. N. Spatial Variation in the Degradation Rate of the Pesticides Isoproturon, Azoxystrobin, and Diflufenican in Soil and Its Relationship with Chemical and Microbial Properties. Environ. Pollut. 2006, 139, 279–287. DOI: 10.1016/j.envpol.2005.05.011.
  • Han, L.; Liu, Y.; Fang, K.; Zhang, X.; Liu, T.; Wang, F.; Wang, X. Azoxystrobin Dissipation and Its Effect on Soil Microbial Community Structure and Function in the Presence of Chlorothalonil, Chlortetracycline, and Ciprofloxacin. Environ. Pollut. 2020, 257, 113578. DOI: 10.1016/j.envpol.2019.113578.
  • Herrero-Hernández, E.; Marín-Benito, J. M.; Andrades, M. S.; Sánchez-Martín, M. J.; Rodríguez-Cruz, M. S. Field versus Laboratory Experiments to Evaluate the Fate of Azoxystrobin in an Amended Vineyard Soil. J. Environ. Manage. 2015, 163, 78–86. DOI: 10.1016/j.jenvman.2015.08.010.
  • Goulson, D. An Overview of the Environmental Risks Posed by Neonicotinoid Insecticides. J. Appl. Ecol. 2013, 50, 977–987. DOI: 10.1111/1365-2664.12111.
  • Rexrode, M.; Barrett, M.; Ellis, J.; Gabe, P.; Vaughan, A.; Felkel, J.; Melendez, J. EFED Risk Assessment for the Seed Treatment of Clothianidin 600FS on Corn and Canola; United States Environmental Protection Agency: Washington, DC, 2003.
  • Wang, X.; Xiang, Z.; Yan, X.; Sun, H.; Li, Y.; Pan, C. Dissipation Rate and Residual Fate of Thiamethoxam in Tobacco Leaves and Soil Exposed to Field Treatments. Bull. Environ. Contam. Toxicol. 2013, 91, 246–250. DOI: 10.1007/s00128-013-1043-2.
  • He, M.; Song, D.; Hong, C.; Jia, H.C.; Zheng, Y.Q. Concentration and dissipation of chlorantraniliprole and thiamethoxam residues in maize straw, maize, and soil. Journal of Environmental Science and Health, Part B 2016, 51, 594–601. DOI: 10.1080/03601234.2016.1181903.
  • Wettstein, F. E.; Kasteel, R.; Garcia Delgado, M. F.; Hanke, I.; Huntscha, S.; Balmer, M. E.; Poiger, T.; Bucheli, T. D. Leaching of the Neonicotinoids Thiamethoxam and Imidacloprid from Sugar Beet Seed Dressings to Subsurface Tile Drains. J. Agric. Food Chem. 2016, 64, 6407–6415. DOI: 10.1021/acs.jafc.6b02619.
  • Hilton, M. J.; Emburey, S. N.; Edwards, P. A.; Dougan, C.; Ricketts, D. C. The Route and Rate of Thiamethoxam Soil Degradation in Laboratory and Outdoor Incubated Tests, and Field Studies following Seed Treatments or Spray Application. Pest Manage. Sci. 2019, 75, 63–78. DOI: 10.1002/ps.5168.
  • Gupta, S.; Gajbhiye, V. T.; Gupta, R. K. Soil Dissipation and Leaching Behavior of a Neonicotinoid Insecticide Thiamethoxam. Bull. Environ. Contam. Toxicol. 2008, 80, 431–437. DOI: 10.1007/s00128-008-9420-y.
  • Radolinski, J.; Wu, J.; Xia, K.; Hession, W. C.; Stewart, R. D. Plants Mediate Precipitation-Driven Transport of a Neonicotinoid Pesticide. Chemosphere 2019, 222, 445–452. DOI: 10.1016/j.chemosphere.2019.01.150.
  • Hladik, M. L.; Kolpin, D. W.; Kuivila, K. M. Widespread Occurrence of Neonicotinoid Insecticides in Streams in a High Corn and Soybean Producing Region, USA. Environ. Pollut. 2014, 193, 189–196. DOI: 10.1016/j.envpol.2014.06.033.
  • Fenner, K.; Screpanti, C.; Renold, P.; Rouchdi, M.; Vogler, B.; Rich, S. Comparison of and Small Molecule Biotransformation Half-Lives between Activated Sludge and Soil: Opportunities for Read-across? Environ. Sci. Technol. 2020, 54, 3148–3158. DOI: 10.1021/acs.est.9b05104.
  • Wu, X. H.; Xu, J.; Liu, Y. Z.; Dong, F. S.; Liu, X. G.; Zhang, W. W.; Zheng, Y. Q. Impact of Fluxapyroxad on the Microbial Community Structure Functional Diversity in the Silty-Loam Soil. J. Integ. Agric. 2015, 14, 114–124. DOI: 10.1016/S2095-3119(14)60746-2.
  • Li, S.; Liu, X.; Chen, C.; Dong, F.; Xu, J.; Zheng, Y. Degradation of Fluxapyroxad in Soils and Water/Sediment Systems under Aerobic or Anaerobic Conditions. Bull. Environ. Contam. Toxicol. 2015, 95, 45–50. DOI: 10.1007/s00128-015-1556-y.
  • Zhang, Z.; Jiang, W.; Jian, Q.; Song, W.; Zheng, Z.; Wang, D.; Liu, X. Residues and Dissipation Kinetics of Triazole Fungicides Difenoconazole and Propiconazole in Wheat and Soil in Chinese Fields. Food Chem. 2015, 168, 396–403. DOI: 10.1016/j.foodchem.2014.07.087.
  • Cheng, Y.; Zheng, Y.; Dong, F.; Li, J.; Zhang, Y.; Sun, S.; Li, N.; Cui, X.; Wang, Y.; Pan, X.; Zhang, W. Stereoselective Analysis and Dissipation of Propiconazole in Wheat, Grapes, and Soil by Supercritical Fluid Chromatography-Tandem Mass Spectroscopy. J. Agric. Food Chem. 2017, 65, 234–243. DOI: 10.1021/acs.jafc.6b04623.
  • Wang, C.; Wang, Y.; Wang, R.; Yan, J.; Lv, Y.; Li, A.; Gao, J. Dissipation Kinetics, Residues, and Risk Assessment of Propiconazole and Azoxystrobin in Ginseng and Soil. Int. J. Environ. Anal. Chem. 2017, 97, 1–13. DOI: 10.1080/03067319.2016.1272678.
  • Bromilow, R. H.; Evans, A. A.; Nicholls, P. H. Factor Affecting Degradation Rates of Five Triazole Fungicides in Two Soil Types: 1. Field Studies. Pestic. Sci. 1999, 55, 1135–1142. DOI: 10.1002/(SICI)1096-9063(199912)55:12<1135::AID-PS73>3.0.CO;2-1.
  • Bromilow, R. H.; Evans, A. A.; Nicholls, P. H. Factor Affecting Degradation Rates of Five Triazole Fungicides in Two Soil Types: 1. Laboratory Incubations. Pestic. Sci. 1999, 55, 1129–1134. DOI: 10.1002/ps.2780551202.
  • Kaur, T.; Toor, A. P.; Wanchoo, R. K. UV-Assisted Degradation of Propiconazole in a TiO2 Aqueous Suspension: identification of Transformation Products and the Reaction Pathway Using GC/MS. Int. J. Environ. Anal. Chem. 2015, 95, 494–507. DOI: 10.1080/03067319.2015.1046054.
  • Yen, J.-H.; Chang, J.-S.; Huang, P.-J.; Wang, Y.-S. Effects of Fungicides Triadimefon and Propiconazole on Soil Bacterial Communities. Journal of Environmental Science and Health, Part B 2009, 44, 681–689. doi:10.1080/03601230903163715.
  • Zhang, F.; Wang, L.; Zhou, L.; Wu, D.; Pan, H.; Pan, C. Residue Dynamics of Pyraclostrobin in Peanut and Field Soil by QuEChERS and LC-MS/MS. Ecotoxicol. Environ. Saf. 2012, 78, 116–122. DOI: 10.1016/j.ecoenv.2011.11.003.
  • Reddy, S. N.; Gupta, S.; Gajbhiye, V. T. Effect of Moisture, Organic Matter, Microbial Population and Fortification Level on Dissipation of Pyraclostrobin in Soils. Bull. Environ. Contam. Toxicol. 2013, 91, 356–361. DOI: 10.1007/s00128-013-1045-0.
  • Potter, T. L.; Strickland, T. C.; Joo, H.; Culbreath, A. K. Accelerated Soil Dissipation of Tebuconazole Following Multiple Applications to Peanut. J. Environ. Qual. 2005, 34, 1205–1213. DOI: 10.2134/jeq2004.0473.
  • Inman-Bamber, N. G. Temperature and Seasonal Effects on Canopy Development and Light Interception of Sugarcane. Field Crops Res. 1994, 36, 41–51. DOI: 10.1016/0378-4290(94)90051-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.