Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 56, 2021 - Issue 3
299
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Core-shell magnetic Ag-molecularly imprinted composite for surface enhanced Raman scattering detection of carbaryl

, &

References

  • Gunasekara, A. S.; Rubin, A. L.; Goh, K. S.; Spurlock, F. C.; Tjeerdema, R. S. Environmental Fate and Toxicology of Carbaryl. Rev of Environ Contam Toxicol. 2008, 196, 95–121. DOI: 10.1007/978-0-387-78444-1_4. PMID: 19025094.
  • Rani, M.; Shanker, U. Degradation of Traditional and New Emerging Pesticides in Water by Nanomaterials: Recent Trends and Future Recommendations. Int. J. Environ. Sci. Technol. 2018, 15, 1347–1380. DOI: 10.1007/s13762-017-1512-y.
  • Zhang, Z.; Si, T.; Liu, J.; Zhou, G. In-Situ Grown Silver Nanoparticles on Nonwoven Fabrics Based on Mussel-Inspired Polydopamine for Highly Sensitive SERS Carbaryl Pesticides Detection. Nanomaterials 2019, 9, 384. DOI: 10.3390/nano9030384.
  • Venu, S.; Santhi, K.; Rawson, A.; Paranthaman, R.; Sureshkumar, K. Liquid Chromatography–Mass Spectrometry/Mass Spectrometry Method Development for the Determination of Carbaryl Residue in Honey. Phcog. Mag. 2019, 15, 205–211. DOI: 10.4103/pm.pm_641_18.
  • Foo, K. Y.; Hameed, B. H. Detoxification of Pesticide Waste via Activated Carbon Adsorption Process. J. Hazard. Mater. 2010, 175, 1–11. DOI: 10.1016/j.jhazmat.2009.10.014.
  • Dinc, M.; Esen, C.; Mizaikoff, B. Recent Advances on Core–Shell Magnetic Molecularly Imprinted Polymers for Biomacromolecules. TrAC - Trends Anal. Chem. 2019, 114, 202–217. DOI: 10.1016/j.trac.2019.03.008.
  • Aguilar-Arteaga, K.; Rodriguez, J. A.; Barrado, E. Magnetic Solids in Analytical Chemistry: A Review. Anal. Chim. Acta. 2010, 674, 157–165. DOI: 10.1016/j.aca.2010.06.043.
  • Ouyang, L.; Li, D.; Zhu, L.; Tang, H. Precision Target Guide Strategy for Applying SERS into Environmental Monitoring. In Raman Spectroscopy and Applications, Khan Maaz, Ed.; IntechOpen, 2017. DOI: 10.5772/64813. Corpus ID: 51729701
  • Song, D.; Yang, R.; Long, F.; Zhu, A. Applications of Magnetic Nanoparticles in Surface-Enhanced Raman Scattering (SERS) Detection of Environmental Pollutants. J. Environ. Sci. (China). 2019, 80, 14–34. DOI: 10.1016/j.jes.2018.07.004.
  • Kim, Y. J.; Sun, X.; Jones, J. E.; Lin, M.; Yu, Q.; Li, H. Surface Modification of SERS Substrates with Plasma-Polymerized Trimethylsilane Nanocoating. Appl. Surf. Sci. 2015, 331, 346–352. (January 2018). DOI: 10.1016/j.apsusc.2015.01.063.
  • Jiang, B.; Lian, L.; Xing, Y.; Zhang, N.; Chen, Y.; Lu, P.; Zhang, D. Advances of Magnetic Nanoparticles in Environmental Application: Environmental Remediation and (Bio)Sensors as Case Studies. Environ. Sci. Pollut. Res. Int. 2018, 25, 30863–30879. DOI: 10.1007/s11356-018-3095-7.
  • Kaur, R.; Hasan, A.; Iqbal, N.; Alam, S.; Saini, M. K.; Raza, S. K. Synthesis and Surface Engineering of Magnetic Nanoparticles for Environmental Cleanup and Pesticide Residue Analysis: A Review. J. Sep. Sci. 2014, 37, 1805–1825. DOI: 10.1002/jssc.201400256.
  • Cheshari, E. C.; Ren, X.; Li, X. Core–Shell Ag-Molecularly Imprinted Composite for SERS Detection of Carbendazim. Int. J. Environ. Anal. Chem. 2019, 00, 1–14. DOI: 10.1080/03067319.2019.1651301.
  • Ren, X.; Cheshari, E. C.; Qi, J.; Li, X. Silver Microspheres Coated with a Molecularly Imprinted Polymer as a SERS Substrate for Sensitive Detection of Bisphenol A. Microchim. Acta 2018, 185, 242. DOI: 10.1007/s00604-018-2772-z.
  • Ren, X.; Yang, L.; Li, Y.; Cheshari, E. C.; Li, X. The Integration of Molecular Imprinting and Surface-Enhanced Raman Scattering for Highly Sensitive Detection of Lysozyme Biomarker Aided by Density Functional Theory. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2020, 228, 117764. DOI: 10.1016/j.saa.2019.117764.
  • Kalska-Szostko, B.; Wykowska, U.; Satuła, D. Magnetic Nanoparticles of Core-Shell Structure. Colloids Surfaces A Physicochem. Eng. Asp 2015, 481, 527–536. DOI: 10.1016/j.colsurfa.2015.05.040.
  • Ouyang, L.; Zhu, L.; Jiang, J.; Tang, H. A Surface-Enhanced Raman Scattering Method for Detection of Trace Glutathione on the Basis of Immobilized Silver Nanoparticles and Crystal Violet Probe. Anal. Chim. Acta. 2014, 816, 41–49. DOI: 10.1016/j.aca.2014.01.046.
  • Lv, B.; Sun, Z.; Zhang, J.; Jing, C. Multifunctional Satellite Fe3O4-Au@TiO2 Nano-Structure for SERS Detection and Photo-Reduction of Cr(VI). Colloids Surfaces A Physicochem. Eng. Asp 2017, 513, 234–240. DOI: 10.1016/j.colsurfa.2016.10.048.
  • Huber, D. Synthesis, Properties, and Applications of Iron Nanoparticles. Small 2005, 1, 482–501. DOI: 10.1002/smll.200500006.
  • Bhateria, R.; Singh, R. A Review on Nanotechnological Application of Magnetic Iron Oxides for Heavy Metal Removal. J. Water Process Eng 2019, 31, 100845. (October 2018). DOI: 10.1016/j.jwpe.2019.100845.
  • Li, L.; Hu, J.; Shi, X.; Fan, M.; Luo, J.; Wei, X. Nanoscale Zero-Valent Metals: A Review of Synthesis, Characterization, and Applications to Environmental Remediation. Environ. Sci. Pollut. Res. Int. 2016, 23, 17880–17900. DOI: 10.1007/s11356-016-6626-0.
  • Li, J.; Zhou, Q.; Yuan, Y.; Wu, Y. Iron-Based Magnetic Molecular Imprinted Polymers and Their Application in Removal and Determination of Di-n-Pentyl Phthalate in Aqueous Media. R. Soc. Open Sci. 2017, 4, 170672. DOI: 10.1098/rsos.170672.
  • Carroll, K. J.; Hudgins, D. M.; Spurgeon, S.; Kemner, K. M.; Mishra, B.; Boyanov, M. I.; Brown, L. W.; Taheri, M. L.; Carpenter, E. E. One-Pot Aqueous Synthesis of Fe and Ag Core/Shell Nanoparticles. Chem. Mater. 2010, 22, 6291–6296. DOI: 10.1021/cm101996u.
  • Liu, W. J.; Qian, T. T.; Jiang, H. Bimetallic Fe Nanoparticles: Recent Advances in Synthesis and Application in Catalytic Elimination of Environmental Pollutants. Chem. Eng. J. 2014, 236, 448–463. DOI: 10.1016/j.cej.2013.10.062.
  • Han, S.; Li, X.; Wang, Y.; Chen, S. Multifunctional Imprinted Polymers Based on CdTe/CdS and Magnetic Graphene Oxide for Selective Recognition and Separation of p-t-Octylphenol. Chem. Eng. J. 2015, 271, 87–95. DOI: 10.1016/j.cej.2015.02.080.
  • Han, S.; Li, X.; Wang, Y.; Su, C. A Core-Shell Fe3O4 Nanoparticle-CdTe Quantum Dot-Molecularly Imprinted Polymer Composite for Recognition and Separation of 4-Nonylphenol. Anal. Methods 2014, 6, 2855–2861. DOI: 10.1039/c3ay41924j.
  • Yan, X.; Li, H.; Su, X. Review of Optical Sensors for Pesticides. TrAC - Trends Anal. Chem. 2018, 103, 1–20. DOI: 10.1016/j.trac.2018.03.004.
  • Singh, K. P.; Singh, A. K.; Gupta, S.; Sinha, S. Optimization of Cr(VI) Reduction by Zero-Valent Bimetallic Nanoparticles Using the Response Surface Modeling Approach. Desalination 2011, 270, 275–284. DOI: 10.1016/j.desal.2010.11.056.
  • Chang, C.; Lian, F.; Zhu, L. Simultaneous Adsorption and Degradation of γ-HCH by NZVI/Cu Bimetallic Nanoparticles with Activated Carbon Support. Environ. Pollut. 2011, 159, 2507–2514. DOI: 10.1016/j.envpol.2011.06.021.
  • Yao, W.; Fang, Y.; Li, G.; Gao, Z.; Cheng, Y. Adsorption of Carbaryl Using Molecularly Imprinted Microspheres Prepared by Precipitation Polymerization. Polym. Adv. Technol. 2008, 19, 812–816. DOI: 10.1002/pat.1039.
  • Demirbas, E.; Dizge, N.; Sulak, M. T.; Kobya, M. Adsorption Kinetics and Equilibrium of Copper from Aqueous Solutions Using Hazelnut Shell Activated Carbon. Chem. Eng. J 2009, 148, 480–487. DOI: 10.1016/j.cej.2008.09.027.
  • So, J.; Pang, C.; Dong, H.; Jang, P.; Juhyok, U.; Ri, K.; Yun, C. Adsorption of 1-Naphthyl Methyl Carbamate in Water by Utilizing a Surface Molecularly Imprinted Polymer. Chem. Phys. Lett. 2018, 699, 199–207. DOI: 10.1016/j.cplett.2018.03.059.
  • Krishnamurti, G. S. R.; Huang, P. M. Influence of Citrate on the Kinetics of Fe(II) Oxidation and the Formation of Iron Oxyhydroxides. Clays Clay Miner 1991, 39, 28–34. DOI: 10.1346/CCMN.1991.0390104.
  • Mansouriieh, N.; Sohrabi, M. R.; Khosravi, M. Adsorption Kinetics and Thermodynamics of Organophosphorus Profenofos Pesticide onto Fe/Ni Bimetallic Nanoparticles. Int. J. Environ. Sci. Technol. 2016, 13, 1393–1404. DOI: 10.1007/s13762-016-0960-0.
  • Ghosh, A.; Dutta, S.; Mukherjee, I.; Biswas, S.; Chatterjee, S.; Saha, R. Template-Free Synthesis of Flower-Shaped Zero-Valent Iron Nanoparticle: Role of Hydroxyl Group in Controlling Morphology and Nitrate Reduction. Adv. Powder Technol. 2017, 28, 2256–2264. DOI: 10.1016/j.apt.2017.06.006.
  • Fan, Y.; Lai, K.; Rasco, B. A.; Huang, Y. Determination of Carbaryl Pesticide in Fuji Apples Using Surface-Enhanced Raman Spectroscopy Coupled with Multivariate Analysis. Lwt 2015, 60, 352–357. DOI: 10.1016/j.lwt.2014.08.011.
  • Jiang, J.; Bosnick, K.; Maillard, M.; Brus, L. Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals. J. Phys. Chem. B 2003, 107, 9964–9972. DOI: 10.1021/jp034632u.
  • Guo, Y.; Kang, L.; Chen, S.; Li, X. High Performance Surface-Enhanced Raman Scattering from Molecular Imprinting Polymer Capsulated Silver Spheres. Phys. Chem. Chem. Phys. 2015, 17, 21343–21347. DOI: 10.1039/c5cp00206k.
  • Liu, Z.; Gao, Y.; Jin, L.; Jin, H.; Xu, N.; Yu, X.; Yu, S. Core-Shell Regeneration Magnetic Molecularly Imprinted Polymers-Based SERS for Sibutramine Rapid Detection. ACS Sustainable Chem. Eng. 2019, 7, 8168–8175. DOI: 10.1021/acssuschemeng.8b06120.
  • Yu, C.; Zhang, D.; Dong, X.; Lin, Q. Pyrolytic Behavior of a Zero-Valent Iron Biochar Composite and Its Cu(Ii) Removal Mechanism. RSC Adv. 2018, 8, 34151–34160. DOI: 10.1039/C8RA05676E.
  • Sitjar, J.; Liao, J.-D.; Lee, H.; Liu, B. H.; Fu, W. E. SERS-Active Substrate with Collective Amplification Design for Trace Analysis of Pesticides. Nanomaterials 2019, 9, 664. DOI: 10.3390/nano9050664.
  • Alsammarraie, F. K.; Lin, M. Using Standing Gold Nanorod Arrays as Surface-Enhanced Raman Spectroscopy (SERS) Substrates for Detection of Carbaryl Residues in Fruit Juice and Milk. J. Agric. Food Chem. 2017, 65, 666–674. DOI: 10.1021/acs.jafc.6b04774.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.