Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 56, 2021 - Issue 4
266
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Distribution of organochlorine, organophosphates, carbamate, thiocarbamate, pyrethroids, and strobilurins in surface sediments of the Rio de Ondas watershed by GC-MS

, ORCID Icon, , , &

References

  • Takacs, L. The Historical Development of Mechanochemistry. Chem. Soc. Rev. 2013, 42, 7649–7659. DOI: 10.1039/c2cs35442j.
  • Cazes, J.; Ewing, G. W.Ewing’s Analytical Instrumentation Hand book, 3rd Ed.; Jack Cazes, Ed.; Boca Raton, FL, 2005; pp 239–256.  
  • Ettre, L. S. Chromatography: The Separation Technique of the 20th Century. Chromatographia 2000, 51, 7–17. DOI: 10.1007/BF02490689.
  • Webster, G. K.; Kott, L. Chromatographic Method Development; Jenny Stanford Publishing Pte. Ltd.: Singapore, 2020; pp 542.
  • Gogoi, A.; Mazumder, P.; Tyagi, V. K.; Tushara Chaminda, G. G.; An, A. K.; Kumar, M. Occurrence and Fate of Emerging Contaminants in Water Environment: A Review. Groundw. Sustain. Dev. 2018, 6, 169–180. DOI: 10.1016/j.gsd.2017.12.009.
  • Bhandari, A.; Surampalli, R. Y.; Adams, C. D.; Champagne, P.; Ong, S. K.; Tyagi, R. D.; Zhang, T. C. Contaminants of Emerging Concern. American Society of Civil Engineers: USA, 2009; pp 490.
  • Zhu, L.; Jiang, C.; Panthi, S.; Allard, S. M.; Sapkota, A. R.; Sapkota, A. Impact of High Precipitation and Temperature Events on the Distribution of Emerging Contaminants in Surface Water in the Mid-Atlantic, United States. Sci Total Environ. 2021, 755, 142552. DOI: 10.1016/j.scitotenv.2020.142552.
  • Materon, E. M.; Ibáñez-Redín, G.; Joshi, N.; Gonçalves, D.; Oliveira, O. N.; Faria, R. C. Analytical Detection of Pesticides, Pollutants, and Pharmaceutical Waste in the Environment. In.; Nanosensors for Environmental Applications. Environmental Chemistry for a Sustainable World; Kumar Tuteja, S., Arora, D., Dilbaghi, N., Lichtfouse, E. Eds.; Vol 43. Springer, Cham. DOI: 10.1007/978-3-030-38101-1_3.
  • Waxman, M. F. Agrochemical and Pesticides Safety Handbook. CRC Press: Boca Raton, 1998; pp 382.
  • Montuori, P.; Aurino, S.; Garzonio, F.; Sarnacchiaro, P.; Polichetti, S.; Nardone, A.; Triassi, M. Estimates of Tiber River Organophosphate Pesticide Loads to the Tyrrhenian Sea and Ecological risk. Sci. Total Environ. 2016, 559, 218–231. DOI: 10.1016/j.scitotenv.2016.03.156.
  • Ccanccapa, A.; Masiá, A.; Navarro-Ortega, A.; Picó, Y.; Barceló, D. Pesticides in the Ebro River Basin: Occurrence and Risk Assessment. Environ. Pollut 2016, 211, 414–424. DOI: 10.1016/j.envpol.2015.12.059.
  • Wang, Y.; Zhang, S.; Cui, W.; Meng, X.; Tang, X. Polycyclic Aromatic Hydrocarbons and Organochlorine Pesticides in Surface Water from the Yongding River Basin, China: Seasonal Distribution, Source Apportionment, and Potential Risk Assessment. Sci. Total Environ. 2018, 618, 419–429. DOI: 10.1016/j.scitotenv.2017.11.066.
  • Ogbeide, O.; Tongo, I.; Ezemonye, L. Assessing the Distribution and Human Health Risk of Organochlorine Pesticide Residues in Sediments from Selected Rivers. Chemosphere 2016, 144, 1319–1326. DOI: 10.1016/j.chemosphere.2015.09.108.
  • Montuori, P.; Aurino, S.; Nardone, A.; Cirillo, T.; Triassi, M. Spatial Distribution and Partitioning of Organophosphates Pesticide in Water and Sediment from Sarno River and Estuary, Southern Italy. Environ. Sci. Pollut. Res. Int. 2015, 22, 8629–8642. DOI: 10.1007/s11356-014-4016-z.
  • Ccanccapa, A.; Masiá, A.; Andreu, V.; Picó, Y. Spatio-Temporal Patterns of Pesticide Residues in the Turia and Júcar Rivers (Spain). Sci. Total Environ. 2016, 540, 200–210. DOI: 10.1016/j.scitotenv.2015.06.063.
  • Ponce-Vélez, G.; de la Lanza-Espino, G.; la Lanza-Espino, G. de. Organophosphate pesticides in coastal lagoon of the Gulf of Mexico. JEP (Irvine,. Calif). 2019, 10, 103–117. DOI: 10.4236/jep.2019.102007.
  • Cavoski, I.; Caboni, P.; Miano, T. Natural Pesticides and Future Perspectives. In Pesticides in the Modern World - Pesticides Use and Management; Stoytcheva, M., Ed.; InTech: Rijeka, Croatia, 2011; pp 170–190.
  • Kennedy, G. G. Pesticides: Theory and Application. Spring: Raleigh, NC, 1984; pp 83.
  • Benson, W. R. The Chemistry of Pesticides. Food and Drugs Administrtion: Washington, DC, 2008; pp 17–42.
  • Bombardi, L. M. Geography of Pesticide Use in Brazil and Connections with the European Union. FFLCH - USP: São Paulo, 2017; pp 296.
  • Attaullah, M.; Yousuf, M. J.; Shaukat, S.; Anjum, S. I.; Ansari, M. J.; Buneri, I. D.; Tahir, M.; Amin, M.; Ahmad, N.; Khan, S. U. Serum Organochlorine Pesticides Residues and Risk of Cancer: A Case-Control Study. Saudi J. Biol. Sci. 2018, 25, 1284–1290. DOI: 10.1016/j.sjbs.2017.10.023.
  • Kang, J.-H.; Chang, Y.-S. Organochlorine Pesticides in Human Serum. In Pesticides - Strategies for Pesticides Analysis; Stoytcheva, M., Ed.; InTech: Rijeka, Croatia, 2011; pp 215–240.
  • Gong, X.; Li, Q.; Zhang, L.; Zhao, Z.; Xue, B.; Yao, S.; Wang, X.; Cai, Y. The Occurrence of Organochlorine Pesticides (OCPs) in Riverine Sediments of Hilly Region of Southern China: Implications for Sources and Transport Processes. J. Geochemical Explor. 2020, 216, 106580. DOI: 10.1016/j.gexplo.2020.106580.
  • Chen, K.; Cai, M.; Wang, Y.; Chen, B.; Li, X.; Qiu, C.; Huang, S.; Sun, J.; Liu, X.; Qian, B.; Ke, H. Organochlorine Pesticides in Sediment of Zhang River Estuary Mangrove National Natural Reserve: The Implication of Its Source Change in China’s Mangroves. Sustain 2020, 12, 1–18.
  • Guo, R.; Ren, X.; Ren, H. A New Method for Analysis of the Toxicity of Organophosphorus Pesticide, Dimethoate on Rotifer Based on Response Surface Methodology. J. Hazard. Mater. 2012, 237–238, 270–276.
  • Getzin, L. W. Persistence and Degradation of Carbofuran in Soil. Environ. Entomol. 1973, 2, 461–468. DOI: 10.1093/ee/2.3.461.
  • Santos, M. A. T.; Dos; Areas, M. A.; Reyes, F. G. R. Pyrethroids - an Overview. Brazilian J. Food Nutr. 2007, 18, 339–349.
  • Stehle, S.; Schulz, R. Agricultural Insecticides Threaten Surface Waters at the Global Scale. Proc. Natl. Acad. Sci. USA. 2015, 112, 5750–5755. DOI: 10.1073/pnas.1500232112.
  • Stehle, S.; Schulz, R. Pesticide Authorization in the EU-Environment Unprotected? Environ. Sci. Pollut. Res. Int. 2015, 22, 19632–19647. DOI: 10.1007/s11356-015-5148-5.
  • Kuck, K.-H. QoI Fungicides: Resistance Mechanisms and Its Practical Importance. In Pesticide Chemistry Crop: Crop Protection, Public Health, Environmental Safety; Ohkawa, H., Miyagawa, H., Lee, P.W., Eds.; Wiley-VCH: Monheim Germany, 2007; pp 275–283.
  • Balba, H. Review of Strobilurin Fungicide Chemicals. J. Environ. Sci. Health. B. 2007, 42, 441–451. DOI: 10.1080/03601230701316465.
  • Karlsson, A. S.; Lesch, M.; Weihermüller, L.; Thiele, B.; Disko, U.; Hofmann, D.; Vereecken, H.; Spielvogel, S. Pesticide Contamination of the Upper Elbe River and an Adjacent Floodplain Area. J. Soils Sediments 2020, 20, 2067–2081. DOI: 10.1007/s11368-020-02571-w.
  • Vryzas, Z. Pesticide Fate in Soil-Sediment-Water Environment in Relation to Contamination Preventing Actions. Curr. Opin. Environ. Sci. Heal. 2018, 4, 5–9. DOI: 10.1016/j.coesh.2018.03.001.
  • Carazo-Rojas, E.; Pérez-Rojas, G.; Pérez-Villanueva, M.; Chinchilla-Soto, C.; Chin-Pampillo, J. S.; Aguilar-Mora, P.; Alpízar-Marín, M.; Masís-Mora, M.; Rodríguez-Rodríguez, C. E.; Vryzas, Z. Pesticide Monitoring and Ecotoxicological Risk Assessment in Surface Water Bodies and Sediments of a Tropical Agro-Ecosystem. Environ. Pollut. 2018, 241, 800–809. DOI: 10.1016/j.envpol.2018.06.020.
  • Mwevura, H.; Kylin, H.; Vogt, T.; Bouwman, H. Dynamics of Organochlorine and Organophosphate Pesticide Residues in Soil, Water, and Sediment from the Rufiji River Delta. Tanzania. Reg. Stud. Mar. Sci. 2021, 41, 101607. DOI: 10.1016/j.rsma.2020.101607.
  • Li, H.; Cheng, F.; Wei, Y.; Lydy, M. J.; You, J. Global Occurrence of Pyrethroid Insecticides in Sediment and the Associated Toxicological Effects on Benthic Invertebrates: An Overview. J. Hazard. Mater. 2017, 324, 258–271. DOI: 10.1016/j.jhazmat.2016.10.056.
  • Islam, R.; Kumar, S.; Karmoker, J.; Kamruzzaman, M.; Rahman, M. A.; Biswas, N.; Tran, T. K. A.; Rahman, M. M. Bioaccumulation and Adverse Effects of Persistent Organic Pollutants (POPs) on Ecosystems and Human Exposure: A Review Study on Bangladesh Perspectives. Environ. Technol. Innov. 2018, 12, 115–131. DOI: 10.1016/j.eti.2018.08.002.
  • Sharma, B. M.; Bharat, G. K.; Tayal, S.; Nizzetto, L.; Čupr, P.; Larssen, T. Environment and Human Exposure to Persistent Organic Pollutants (POPs) in India: A Systematic Review of Recent and Historical Data. Environ. Int. 2014, 66, 48–64. DOI: 10.1016/j.envint.2014.01.022.
  • Gaur, N.; Narasimhulu, K.; PydiSetty, Y. Recent Advances in the Bio-Remediation of Persistent Organic Pollutants and Its Effect on Environment. J. Clean. Prod. 2018, 198, 1602–1631. DOI: 10.1016/j.jclepro.2018.07.076.
  • Zanella, C. Resumption in the West. http://aiba.org.br/wp-content/uploads/2018/06/anuario-16-17.pdf. (accessed March 2019).
  • Ferreira, L. L.; Carvalho, I. R.; Prado, R. L. F.; Carballau, M. R.; Pereira, A. I.; de, A.; Fernandes, M. d S.; Curvêlo, C. R. d S.; Carnevale, A. B.; Santos, NSC d. Yield of Corn Hybrids in Western Bahia and Southwest Goiania in the Agricultural Year. J. Exp. Agric. Int 2017/2018, 2020, 150–158.
  • Pereira, É. R.; Almeida, T. S. D.; Borges, D. L. G.; Carasek, E.; Welz, B.; Feldmann, J.; Campo Menoyo, J. D. Investigation of Chemical Modifiers for the Direct Determination of Arsenic in Fish Oil Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Talanta 2016, 150, 142–147. DOI: 10.1016/j.talanta.2015.12.036.
  • Fistarol, P. H. B.; Santos, JYG d. Implications of Land Use and Land Cover Changes in Soil Loss in the Rio de Ondas River Basin, State of Bahia. Okara Geogr. em Debate 2020, 14, 81–103.
  • Almeida, R. D. S.; Latuf, M. D. O.; Santos, P. S. Deforestation Analysis in the Ondas River Basin in the Period of 1984 to 2014 Western of Bahia. Cad. Prudentino Geogr 2016, 1, 41–63.
  • European Commission. Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2019-12682.pdf. (accessed January 2021).
  • FAO (Food and Agriculture Organization). Guidelines on Performance Criteria for Methods of Analysis for the Determination of Pesticide Residues in Food and Feed. http://www.fao.org/fao-who-codexalimentarius/sh-proxy/fr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCAC%2BGL%2B90-2017%252FCXG_090e.pdf. (accessed January 2021).
  • Ribani, M.; Grespan Bottoli, C. B.; Collins, C. H.; Fontes Jardim, I. C. S.; Costa Melo, L. F. Validation for Chromatographic and Electrophoretic Methods. Quím. Nova 2004, 27, 771–780. DOI: 10.1590/S0100-40422004000500017.
  • Asnin, L. D. Peak Measurement and Calibration in Chromatographic Analysis. TrAC - Trends Anal. Chem 2016, 81, 51–62. DOI: 10.1016/j.trac.2016.01.006.
  • Agência Nacional de Vigilância Sanitária (ANVISA). Validation of analytical methods. Resolution RDC No 166, of 24 of July of 2017, DOU 143.
  • Action Stat. Action Stat Estatcamp. Statistics and quality consultancy. Versão 3.6. Estatcamp Team, São Carlos. http://www.portalaction.com.br/. (accessed January 2020).
  • Miller, J. N.; Miller, J. C. Statistics and Chemometrics for Analytical Chemistry, 6th Ed.; Pearson Education Limited; 2010, pp 680.
  • AOAC. Appendix F: Guidelines for Standard Method Performance Requirements. http://www.eoma.aoac.org/app_f.pdf. (accessed November 2020).
  • Chan, C. C.; Lam, H.; Lee, Y. C.; Zhang, X.-M. Analyrical Method Validation and Instrument Performance. John Wiley & Sons, 2004; pp 316.
  • Pereira, P. R. M.; Bolfe, E. L.; Rodrigues, T. C. S.; Sano, E. E. Dynamics of Agricultural Expansion in Areas of the Brazilian Savanna between 2000 and 2019. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch 2020, 43, 1607–1614.
  • Maurya, P. K.; Malik, D. S. Accumulation and Distribution of Organochlorine and Organophosphorus Pesticide Residues in Water, Sediments and Fishes, Heteropneustis Fossilis and Puntius Ticto from Kali River, India. J. Toxicol. Environ. Heal. Sci. 2016, 8, 30–40.
  • Mahboob, S.; Niazi, F.; AlGhanim, K.; Sultana, S.; Al-Misned, F.; Ahmed, Z. Health Risks Associated with Pesticide Residues in Water, Sediments and the Muscle Tissues of Catla Catla at Head Balloki on the River Ravi. Environ. Monit. Assessment 2015, 187, 1–10.
  • Anvisa (Agência Nacional de Vigilância Sanitária). Anvisa monographic index. http://www4.anvisa.gov.br/base/visadoc/CP/CP. [4882-2-0].PDF (accessed January 2019).
  • Moraes, R. F. d. Pesticides in Brazil: usage Patterns, Regulation Policy and Prevention of Regulatory Captur; Institute of Applied Economic Research: Brasília-DF, 2019; pp 76.
  • ATSDR (Agency forToxic Substances and Disease Registry) Toxicological Profile for DDT, DDE, and DDD. US Public Health Service: Atlanta, GA, 2002; pp 497.
  • Ministério do Meio Ambiente (MMA). National Implementation Plan Brazil: Stockholm Convention. MMA: Brasília-DF, 2015; pp 1–192.
  • Ruralistas. Prohibited pesticides are seized in BA on the farm of Japanese giant Agrícola Xingu. https://deolhonosruralistas.com.br/2018/04/19/agrotoxicos-proibidos-sao-apreendidos-na-ba-em-fazenda-da-gigante-japonesa-agricola-xingu/. (accessed October0 2020).
  • ABRAMPA (Associação Brasileira do Ministério Público do Meio Ambiente). Justice determines seizure of 44 tons of pesticides and suspends authorization for use in Bahia. https://abrampa.jusbrasil.com.br/noticias/100548571/justica-determina-apreensao-de-44-toneladas-de-agrotoxicos-e-suspende-autorizacao-de-uso-na-bahia. (accessed October 2020).
  • Spadotto, C. A.; Gomes, M. A. F.; Luchini, L. C.; Andréa, M. M. d. Monitoring of the Environmental Risk of Pesticides: principles and Recommendations. Jaguariúna, 2004; pp 29.
  • Tang, X. Y.; Yang, Y.; Tam, N. F. Y.; Tao, R.; Dai, Y. N. Pesticides in Three Rural Rivers in Guangzhou, China: spatiotemporal Distribution and Ecological Risk. Environ. Sci. Pollut. Res. Int. 2019, 26, 3569–3577. DOI: 10.1007/s11356-018-3808-y.
  • Ke, X.; Gao, L.; Huang, H.; Kumar, S. Toxicity Identification Evaluation of Sediments in Liaohe River. Mar. Pollut. Bull. 2015, 93, 259–265. DOI: 10.1016/j.marpolbul.2015.01.020.
  • Ccanccapa-Cartagena, A.; Pico, Y.; Ortiz, X.; Reiner, E. J. Suspect, Non-Target and Target Screening of Emerging Pollutants Using Data Independent Acquisition: Assessment of a Mediterranean River Basin. Sci. Total Environ. 2019, 687, 355–368. DOI: 10.1016/j.scitotenv.2019.06.057.
  • WHO. Dimethoate health and safety guide united. http://www.inchem.org/documents/hsg/hsg/hsg020.htm#SectionNumber. 1.4 (accessed March 2019).
  • Souza, L. P.; Lima, G. S. D.; Gheyi, H. R.; Nobre, R. G.; Soares, L. A. A. Emergence, Growth, and Production of Colored Cotton Subjected to Salt Stress and Organic Fertilization. Rev. Caatinga 2018, 31, 719–729. DOI: 10.1590/1983-21252018v31n322rc.
  • Scoy, A.; Van; Pennell, A.; Zhang, X. Environmental fate and toxicology of dimethoate. In Reviews of Environmental Contamination and Toxicology (Continuation of Residue Reviews); de Voogt W., Ed.; Springer: Cham, 2016; Vol. 237, pp 54–70. DOI: 10.1007/978-3-319-23573-8_3
  • Freitas, P. L.; De; Polidoro, J. C.; Santos, H. G.; Prado, R. B.; Calderano, S. B.; Greogoris, G.; Manzatto, C. V.; Dowich, I.; Bernardi, A. C. d C. Identification and Physical Chemical Characterization of Sandy and Loamy Texture Latosols from Western Region of Bahia State. Brazil. Cad. Geociências 2014, 11, 83–93.
  • Chen, J.; Guo, R. The Process-Dependent Impacts of Dimethoate on the Feeding Behavior of Rotifer. Chemosphere 2015, 119, 318–325. DOI: 10.1016/j.chemosphere.2014.06.073.
  • Shadegan, M. R.; Banaee, M. Effects of Dimethoate Alone and in Combination with Bacilar Fertilizer on Oxidative Stress in Common Carp, Cyprinus Carpio. Chemosphere 2018, 208, 101–107. DOI: 10.1016/j.chemosphere.2018.05.177.
  • Karpeta-Kaczmarek, J.; Kubok, M.; Dziewięcka, M.; Sawczyn, T.; Augustyniak, M. The Level of DNA Damage in Adult Grasshoppers Chorthippus Biguttulus (Orthoptera, Acrididae) following Dimethoate Exposure is Dependent on the Insects' Habitat. Environ. Pollut. 2016, 215, 266–272. DOI: 10.1016/j.envpol.2016.05.032.
  • Martínez-Morcillo, S.; Pérez-López, M.; Soler-Rodríguez, F.; González, A. The Organophosphorus Pesticide Dimethoate Decreases Cell Viability and Induces Changes in Different Biochemical Parameters of Rat Pancreatic Stellate Cells. Toxicol. Vitr 2017, 2019, 89–97. December
  • Long, J. L. A.; House, W. A.; Parker, A.; Rae, J. E. Micro-Organic Compoind Associated with Sediments in the Humber Rivers. Sci. Total Environ 1998, 210/211, 229–253.
  • Nasrabadi, T.; Bidhendi, G. N.; Karbassi, A.; Grathwohl, P.; Mehrdadi, N. Impact of Major Organophosphate Pesticides Used in Agriculture to Surface Water and Sediment Quality (Southern Caspian Sea Basin. Environ. Earth Sci. 2011, 63, 873–883. DOI: 10.1007/s12665-010-0757-2.
  • Wang, D.; Naito, H.; Nakajima, T. The Toxicity of fenitrothion and permethrin, In Insecticides - Pest Engineering; Perveen, F., Ed.; In Tech, Rijeka, Croatia, 2012, pp. 85–98.
  • Rafique, N.; Tariq, S. R.; Ahmed, D. Monitoring and distribution patterns of pesticide residues in soil from cotton/wheat fields of Pakistan. Environ. Monit. Assess. 2016 Dec, 188(12):695. DOI: 10.1007/s10661-016-5668-6.
  • Marković, M.; Cupać, S.; Durović, R.; Milinović, J.; Kljajić, P. Assessment of Heavy Metal and Pesticide Levels in Soil and Plant Products from Agricultural Area of Belgrade, Serbia. Arch. Environ. Contam. Toxicol. 2010, 58, 341–351. DOI: 10.1007/s00244-009-9359-y.
  • Ricart, M.; Guasch, H.; Barceló, D.; Brix, R.; Conceição, M. H.; Geiszinger, A.; Alda, M. J. L.; de López-Doval, J. C.; Muñoz, I.; Postigo, C.; Romaní. et al. Primary and Complex Stressors in Polluted Mediterranean Rivers: Pesticide Effects on Biological Communities. J. Hydrol. 2010, 383, 52–61. DOI: 10.1016/j.jhydrol.2009.08.014.
  • Santos, A. A. d.; Naime, A. A.; Oliveira, J. d.; Colle, D.; Santos, D. B.; dos Hort, M. A.; Moreira, E. L. G.; Suñol, C.; Bem, A. F. d.; Farina, M. Long-Term and Low-Dose Malathion Exposure Causes Cognitive Impairment in Adult Mice: evidence of Hippocampal Mitochondrial Dysfunction, Astrogliosis and Apoptotic Events. Arch. Toxicol. 2016, 90, 647–660. DOI: 10.1007/s00204-015-1466-0.
  • Brasil Ministério da Saúde (MS). Recommendations on the use of Malathion Aqueous Emulsion - EA 44% for the control of Aedes aegypti in space applications at Ultra Low Volume (UBV). http://portalarquivos.saude.gov.br/images/pdf/2014/setembro/02/Recomenda––es-para-o-uso-de-malathion-EW.pdf. (accessed March 2019).
  • Silva, C. P.; Sakamoto, G. K. D.; Pontes, M. P. D.; Vieira, R. R.; Natal, J. P. S.; Conte, H. The Environmental Risks in Brazil Due to the Use of Defensive Malathion Water Emulsion - WE 44% for the Control of Aedes Aegypti (Linnaeus, 1762) (Díptera; Culicidae): a Review. RICA. 2020, 11, 638–646. DOI: 10.6008/CBPC2179-6858.2020.006.0051.
  • Silva-Werneck, J. O.; Martins, É. S.; Monnerat, R. G.; Waga, I. C.; Dumas, V. F.; Sone, E. H.; Praça, L. B.; Berry, C. Characterization of Bacillus thuringiensis Isolates Toxic to Cotton Boll Weevil (Anthonomus grandis). Biol. Control 2007, 40, 65–68. DOI: 10.1016/j.biocontrol.2006.09.009.
  • Martins, M. C.; Kischel, E.; Fumagalli, F.; Santos, G. B. d.; Brugnera, P.; Tamai, M. A. Manejo Do Bicudo Do Algodoeiro. Revista Cultivar 2014, 197, 27–29.
  • Toriani, S. d S.; Oliveira, T. M. N. d.; Pereira, E. M.; Ferrazza, M. H. H. The Influence of Malation 500 EC® Organic Phosphorus in the Hepatic, Renal and Tireoidal Rat Function. Rev. Bras. Cir. Cabeça Pescoço 2017, 46, 52–56.
  • Oliveira, M. L. F d.; Buriola, A. A. Severity of the Intoxications by Cholinesterase Inhibitor Insecticides Registered in the Northwest of the State of Paraná. Rev. Gaúcha Enferm. 2009, 30, 648–655. DOI: 10.1590/S1983-14472009000400010.
  • Babu, V.; Unnikrishnan, P.; Anu, G.; Nair, S. M. Distribution of Organophosphorus Pesticides in the Bed Sediments of a Backwater System Located in an Agricultural Watershed: Influence of Seasonal Intrusion of Seawater. Arch. Environ. Contam. Toxicol. 2011, 60, 597–609. DOI: 10.1007/s00244-010-9569-3.
  • UTZ. List of banned pesticides and list of pesticides under observation. https://utz.org/wp-content/themes/utz/download-attachment.php?post_id=5650. (accessed August 2020).
  • FAO (Food and Agriculture Organization). Methyl paration. http://www.fao.org/3/w5715e/w5715e03.htm#annex. 4 references (accessed March 2019).
  • IBAMA - Ministério do Meio Ambiente. Pesticide commercialization reports. https://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos. (accessed April 2020).
  • Miodovnik, A.; Engel, S. M.; Zhu, C.; Ye, X.; Soorya, L. V.; Silva, M. J.; Calafat, A. M.; Wolff, M. S. Endocrine Disruptors and Childhood Social Impairment. Neurotoxicol. 2011, 32, 261–267. DOI: 10.1016/j.neuro.2010.12.009.
  • Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. Official Journal of the European Union, 5/12/98, L330/32-54.
  • BRAZIL Ministry of the Environment. National Environment Council. Conama Resolution 396, of 03/04/2008 Environmental classification and guidelines for groundwater classification. DOU 66, 07/04/2008, 1, 64-68.
  • Breda, C. E. Agriculture in the Crisis of Western Bahia Determination and Collectivity. Informativo Cooperfarms 2015, 14, 02–03.
  • Masiá, A.; Vásquez, K.; Campo, J.; Picó, Y. Assessment of Two Extraction Methods to Determine Pesticides in Soils, Sediments and Sludges. Application to the Túria River Basin. J. Chromatogr 2015, 1378, 19–31. DOI: 10.1016/j.chroma.2014.11.079.
  • Jabeen, F.; Chaudhry, A. S.; Manzoor, S.; Shaheen, T. Examining pyrethroids, carbamates and neonicotenoids in fish, water and sediments from the Indus River for potential health risks. Environ. Monit. Assess. 2015 Feb, 187(2), 29. DOI: 10.1007/s10661-015-4273-4.
  • Evert, S. Environmental fate of Carbofuran. http://cdpr.ca.gov/docs/emon/pubs/fatememo/carbofuran.pdf. (accessed March 2019).
  • Green, V. S.; Stott, D. E.; Cruz, J. C.; Curi, N. Tillage Impacts on Soil Biological Activity and Aggregation in a Brazilian Cerrado Oxisol. Soil Tillage Res 2007, 92, 114–121. DOI: 10.1016/j.still.2006.01.004.
  • Santos, J. L. O.; Leite, O. Risk Assessment of Groundwater Contamination in the Western Region of Bahia by the Insecticide Carbofuran, Using the Attenuation Factor (AF) and Retardation Factor (RF) Models. Orbital: Electron. J. Chem. 2016, 8(1), 28–35.
  • Anvisa (Agência Nacional de Vigilância Sanitária). Technical Note on the Revaluation of Carbofuran. Gerência Geral de Toxicologia 2017, 18, 1–23.
  • Tsuda, T.; Nakamura, T.; Inoue, A.; Tanaka, K. Pesticides in Water and Sediment from Littoral Area of Lake Biwa. Bull. Environ. Contam. Toxicol. 2009, 82, 683–689. DOI: 10.1007/s00128-009-9676-x.
  • Navarro-Ortega, A.; Tauler, R.; Lacorte, S.; Barceló, D. Occurrence and Transport of PAHs, Pesticides and Alkylphenols in Sediment Samples along the Ebro River Basin. J. Hydrol. 2010, 383, 5–17. DOI: 10.1016/j.jhydrol.2009.12.031.
  • Domagalski, J. L.; Weston, D. P.; Zhang, M.; Hladik, M. Pyrethroid Insecticide Concentrations and Toxicity in Streambed Sediments and Loads in Surface Waters of the San Joaquin Valley, California, USA. Environ. Toxicol. Chem. 2010, 29, 813–823. DOI: 10.1002/etc.106.
  • Hladik, M. L.; Kuivila, K. M. Pyrethroid Insecticides in Bed Sediments from Urban and Agricultural Streams across the United States. J. Environ. Monit. 2012, 14, 1838–1845. DOI: 10.1039/c2em10946h.
  • Allan, I. J.; House, W. A.; Parker, A.; Carter, J. E. Diffusion of the Synthetic Pyrethroid Permethrin into Bed-Sediments. Environ. Sci. Technol. 2005, 39, 523–530. DOI: 10.1021/es040054z.
  • Tokatlı, C. Pesticide Accumulations in Water and Sediment of Dam Lakes Located in Thrace Part of Marmara Region (Turkey). Aquat. Res 2020, 3, 124–134.
  • Perina, F. J.; Tavares, J. A.; Bogiani, J. C.; Suassuna, N. D. Monitoring the Resistance of Ramularia Areola to Fungicides. 2014/15 Crop Research Results Release Bulletin 2016, 1, 6–7.
  • Joseph, R. S. I. (1999). Metabolism of azoxystrobin in plants and animals. In Pesticide Chemistry and Bioscience, The Food Environment Challenge; G. T. Brooks, and T. R. Roberts, Eds.; (Cambridge: The Royal Society of Chemistry), 265–278. DOI: 10.1533/9781845698416.6.265.
  • Jia, W.; Mao, L.; Zhang, L.; Zhang, Y.; Jiang, H. Effects of Two Strobilurins (Azoxystrobin and Picoxystrobin) on Embryonic Development and Enzyme Activities in Juveniles and Adult Fish Livers of Zebrafish (Danio rerio). Chemosphere 2018, 207, 573–580. DOI: 10.1016/j.chemosphere.2018.05.138.
  • Cao, F.; Li, H.; Zhao, F.; Wu, P.; Qian, L.; Huang, L.; Pang, S.; Martyniuk, C. J.; Qiu, L. Parental Exposure to Azoxystrobin Causes Developmental Effects and Disrupts Gene Expression in F1 Embryonic Zebrafish (Danio rerio). Sci Total Environ. 2019, 646, 595–605. DOI: 10.1016/j.scitotenv.2018.07.331.
  • Smalling, K. L.; Hunt, J. W.; Anderson, B. S.; Siegler, K.; Orlando, J. L.; Kuivila, K. M.; Hamilton, M.; Phillips, B. M. Environmental Fate of Fungicides and Other Current-Use Pesticides in a Central California Estuary. Mar. Pollut. Bull. 2013, 73, 144–153. DOI: 10.1016/j.marpolbul.2013.05.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.