Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 56, 2021 - Issue 6
166
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Cow bonechar decreases indaziflam pre-emergence herbicidal activity in tropical soil

ORCID Icon, , ORCID Icon, , ORCID Icon &

References

  • Clay, S. A.; Malo, D. D. The Influence of Biochar Production on Herbicide Sorption Characteristics. In: Herbicides – Properties, Synthesis and Control of Weeds; Hasaneen, M. N. (Ed.); InTech Open: Rijeka, Croatia, 2012; pp 59–74.
  • Nag, S. K.; Kookana, R.; Smith, L.; Krull, E.; Macdonald, L. M.; Gill, G. Poor Efficacy of Herbicides in Biochar-Amended Soils as Affected by Their Chemistry and Mode of Action. Chemosphere 2011, 84, 1572–1577.
  • Yang, X. B.; Ying, G. G.; Peng, P. A.; Wang, L.; Zhao, J. L.; Zhang, L. J.; Yuan, P.; He, H. P. Influence of Biochars on Plant Uptake and Dissipation of Two Pesticides in an Agricultural Soil. J. Agric. Food Chem. 2010, 58, 7915–7921.
  • Clay, S. A.; Krack, K. K.; Bruggeman, S. A.; Papiernik, S.; Schumacher, T. E. Maize, Switchgrass, and Ponderosa Pine Biochar Added to Soil Increased Herbicide Sorption and Decreased Herbicide Efficacy. J. Environ. Sci. Health B 2016, 51, 497–507.
  • Soni, N.; Leon, R. G.; Erickson, J. E.; Ferrell, J. A.; Silveira, M. L. Biochar Decreases Atrazine and Pendimethalin Preemergence Herbicidal Activity. Weed Technol. 2015, 29, 359–366.
  • Mendes, K. F.; Sousa, R. N.; Takeshita, V.; Alonso, F. G.; Rego, A. P. J.; Tornisielo, V. L. Cow Bone Char as a Sorbent to Increase Sorption and Decrease Mobility of Hexazinone, Metribuzin, and Quinclorac in Soil. Geoderma 2019, 343, 40–49.
  • Mendes, K. F.; Hall, K. E.; Takeshita, V.; Rossi, M. L.; Tornisielo, V. L. Animal Bonechar Increases Sorption and Decreases Leaching Potential of Aminocyclopyrachlor and Mesotrione in a Tropical Soil. Geoderma 2018, 316, 11–18.
  • González-Delgado, A. M.; Shukla, M. K.; Ashigh, J.; Perkins, R. Effect of Application Rate and Irrigation on the Movement and Dissipation of Indaziflam. J. Environ. Sci. 2017, 51, 111–119.
  • Brabham, C.; Lei, L.; Gu, L.; Stork, J.; Barrett, M.; DeBolt, S. Indaziflam Herbicidal Action: A Potent Cellulose Biosynthesis Inhibitor. Plant Physiol. 2014, 166, 1177–1185.
  • Sebastian, D. J.; Fleming, M. B.; Patterson, E. L.; Sebastian, J. R.; Nissen, S. J. Indaziflam: A New Cellulose‐Biosynthesis‐Inhibiting Herbicide Provides Long‐Term Control of Invasive Winter Annual Grasses. Pest Manag. Sci. 2017, 73, 2149–2162.
  • González-Delgado, A. M.; Ashigh, J.; Shukla, M. K.; Perkins, R. Mobility of Indaziflam Influenced by Soil Properties in a Semi-Arid Area. PLoS One. 2015, 10, e0126100.
  • Pesticide Properties Data Base – PPDB. Indaziflam. Agriculture & Environment Research Unit (AERU). University of Hertfordshire. Accessed January 13, 2021. https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/1663.htm.
  • Evangelou, M. W.; Fellet, G.; Ji, R.; Schulin, R. Phytoremediation and Biochar Application as an Amendment. In: Phytoremediation. Ansari, A. A., Gill, S. S., Gill, R., Lanza, G. R., Newman, L. (Eds.); Springer International Publishing: Cham, Switzerland, 2015; pp 253–263.
  • Seefeldt, S. S.; Jensen, J. E.; Fuerst, E. P. Log-Logistic Analysis of Herbicide Dose-Response Relationship. Weed Technol. 1995, 9, 218–227.
  • Sorensen, T. A Method of Establishing Groups of Equal Amplitude in Plant Society Based on Similarity of Species Content. In: Ecology, 3rd ed. Odum, E. P. (Ed.); Interamericana: Mexico, 1972; pp 572–640.
  • Cruz, C. D. GENES: software Para Análise de Dados em Estatística Experimental eem Genética Quantitativa. Acta Sci. Agron. 2013, 35, 271–276.
  • Alonso, D. G.; Koskinen, W. C.; Oliveira, R. S., Jr.; Constantin, J.; Mislankar, S. Sorption–Desorption of Indaziflam in Selected Agricultural Soils. J. Agric. Food Chem. 2011, 59, 13096–13101.
  • Mendes, K. F.; Dias Jr, A. F.; Takeshita, V.; Rego, A. P. J.; Tornisielo, V. L. Effect of Biochar Amendments on the Sorption and Desorption Herbicides in Agricultural Soil. In Advanced Sorption Process Applications, Chapter 5. Edebali, S.. IntechOpen: London, 2019; pp. 87–104.
  • Razzaghi, F.; Obour, P. B.; Arthur, E. Does Biochar Improve Soil Water Retention? A Systematic Review and Meta-Analysis. Geoderma 2019, 1, 1–10.
  • Somerville, P. D.; Farrell, C.; May, P. B.; Livesley, S. J. Biochar and Compost Equally Improve Urban Soil Physical and Biological Properties and Tree Growth, with No Added Benefit in Combination. Sci. Total Environ. 2019, 1, 1–12.
  • Gámiz, B.; Velarde, P.; Spokas, K. A.; Hermosín, M. C.; Cox, L. Biochar Soil Additions Affect Herbicide Fate: importance of Application Timing and Feedstock Species. J. Agric. Food Chem. 2017, 65, 3109–3117.
  • Graber, E. R.; Tsechansky, L.; Gerstl, Z.; Lew, B. High Surface Area Biochar Negatively Impacts Herbicide Efficacy. Plant Soil. 2012, 353, 95–106.
  • Zhelezova, A.; Cederlung, H.; Stenström, H. Effect of Biochar Amendment and Ageing on Adsorption and Degradation of Two Herbicides. Water Air Soil Pollut. 2017, 228, 216–228.
  • Trigo, C.; Spokas, K. A.; Cox, L.; Koskinen, W. C. Influence of Soil Biochar Aging on Sorption of the Herbicides MCPA, Nicosulfuron, Terbuthylazine, Indaziflam, and Fluoroethyldiaminotriazine. J. Agric. Food Chem. 2014, 62, 10855–10860.
  • Singh, V.; Masabni, J.; Baumann, P.; Isakeit, T.; Matocha, M.; Provin, T.; Liu, R.; Carson, K.; Bagavathiannan, M. Activated Charcoal Reduces Pasture Herbicide Injury in Vegetable Crops. Crop Protec. 2016, 117, 1–6.
  • Khorram, M. S.; Zhang, G.; Fatemi, A.; Kiefer, R.; Mahmood, A.; Jafarnia, S.; Zakaria, M. P.; Li, G. Effect of Walnut Shell Biochars on Soil Quality, Crop Yields, and Weed Dynamics in a 4-Year Field Experiment. Environ Sci. Pollut. Res. 2020, 27, 18510–18520.
  • Liu, K.; Yu, B.; Luo, K.; Liu, X.; Bai, L. Reduced Sulfentrazone Phytotoxicity through Increased Adsorption and Anionic Species in Biochar-Amended Soils. Environ. Sci. Pollut. Res. 2016, 23, 9956–9963.
  • Tatarková, V.; Hiller, E.; Vaculík, M. Impact of Wheat Straw Biochar Addition to Soil on the Sorption, Leaching, Dissipation of the Herbicide (4-Chloro-2-Methylphenoxy) Acetic Acid and the Growth of Sunflower (Helianthus Annuus L.). Ecotoxicol. Environ. Safe 2013, 92, 215–221.
  • Kookana, R. S.; Sarmah, A. K.; Van Zwieten, L.; Krull, E.; Singh, B. Biochar Application to Soil: agronomic and Environmental Benefits and Unintended Consequences. Adv. Agron. 2011, 112, 103–143.
  • Ni, N.; Kong, D.; Wu, W.; He, J.; Shan, Z.; Li, J.; Dou, Y.; Zhang, Y.; Song, Y.; Jiang, X. The Role of Biochar in Reducing the Bioavailability and Migration of Persistent Organic Pollutants in Soil–Plant Systems: A Review. Bull Environ. Contam. Toxicol. 2020, 104, 157–165.
  • McCullough, P. E.; Yu, J.; Barreda, D. G. Efficacy of Preemergence Herbicides for Controlling a Dinitroaniline-Resistant Goosegrass (Eleusine Indica) in Georgia. Weed Technol. 2013, 27, 639–644.
  • Amim, R. T.; Freitas, S. P.; Freitas, I. L. J.; Gravina, G. A.; Paes, H. M. F. Weed Control with Indaziflam in Soils with Different Physico-Chemical Atributes. Planta Daninha 2014, 32, 791–800.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.