Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 56, 2021 - Issue 7
204
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of an alternative sorbent for passive sampling of the herbicides 2,4-D and Dicamba in the air

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Bedos, C.; Cellier, P.; Calvet, R.; Barriuso, E.; Gabrielle, B. Mass Transfer of Pesticides into the Atmosphere by Volatilization from Soils and Plants: overview. Agronomie 2002, 22, 21–418. DOI: 10.1051/agro.
  • Oliveira, M. F.; Brighenti, A. M. Comportamento de herbicidas no ambiente. In Biologia e Manejo de Plantas Daninhas; Oliveira Junior, R.S.; Constantin, J.; Inoue, M.H.; Omnipax: Curitiba, PR, 2011; pp 263–304.
  • Mueller, T. C. Methods to Measure Herbicide Volatility. Weed Sci. 2015, 63, 116–120. DOI: 10.1614/WS-D-13-00127.1.
  • Mueller, T. C.; Wright, D. R.; Remund, K. M. Effect of Formulation and Application Time of Day on Detecting Dicamba in the Air under Field Conditions. Weed Sci. 2013, 61, 586–593. DOI: 10.1614/WS-D-12-00178.1.
  • Gavlick, W. K.; Wright, D. R.; MacInnes, A.; Hemminghaus, J. W.; Webb, J. K.; Yermolenka, V. I.; Su, W. A Method to Determine the Relative Volatility of Auxin Herbicide Formulations. In Pesticide Formulation and Delivery Systems: 35th Volume, Pesticide Formulations, Adjuvants, and Spray Characterization in 2014, ed. G. Goss (West Conshohocken, PA: ASTM International), 2016, 24–32. DOI: 10.1520/STP158720150006.
  • Ouse, D. G.; Gifford, J. M.; Schleier, J.; Simpson, D. D.; Tank, H. H.; Jennings, C. J.; Annangudi, S. P.; Valverde-Garcia, P.; Masters, R. A. A New Approach to Quantify Herbicide Volatility. Weed Technol. 2018, 32, 691–697. DOI: 10.1017/wet.2018.75.
  • Wells, M. L.; Prostko, E. P.; Carter, O. W. Simulated Single Drift Events of 2,4-D and Dicamba on Pecan Trees. Hortte. 2019, 29, 360–367. DOI: 10.21273/HORTTECH04265-19.
  • Mohseni-Moghadam, M.; Wolfe, S.; Dami, I.; Doohan, D. Response of Wine Grape Cultivars to Simulated Drift Rates of 2,4-D, Dicamba, and Glyphosate, and 2,4-D or Dicamba plus Glyphosate. Weed Technol. 2016, 30, 807–814. DOI: 10.1614/WT-D-15-00106.1.
  • Instituto Brasileiro do Vinho – IBRAVIN. Ministério Público recebe documento com prejuízos causados pelo 2,4-D à vinitinicultura gaúcha. https://www.ibravin.org.br/Noticia/ministerio-publico-recebe-documento-com-prejuizos-causados-pelo-2-4-d-a-vitivinicultura-gaucha/417. (accessed Jan 15, 2020).
  • Yusà, V.; Coscollà, C.; Mellouki, W.; Pastor, A.; de La Guardia, M. Sampling and Analysis of Pesticides in Ambient Air. J. Chromatogr. A. 2009, 1216, 2972–2983. DOI: 10.1016/j.chroma.2009.02.019.
  • Gardner, M.; Spruill-McCombs, M.; Beach, J.; Michael, L.; Thomas, K.; Helburn, R. S. Quantification of 2,4-D on Solid-Phase Exposure Sampling Media by LC-MS-MS. J. Anal. Toxicol. 2005, 29, 188–192. DOI: 10.1093/jat/29.3.188.
  • Kosikowska, M.; Biziuk, M. Review of the Determination of Pesticide Residues in Ambient Air. Trends Anal. Chem. 2010, 29, 1064–1072. DOI: 10.1016/j.trac.2010.06.008.
  • Martel, S. Método multirresíduo Para agrotóxicos e compostos relacionados em ar empregando trapeamento em sorvente polimérico e GC-MS/MS. Ph.D. Dissertation, Universidade Federal de Santa Maria, Santa Maria, RS, 2013.
  • Noguera, M. M. Dinâmica ambiental do herbicida 2,4-D e o potencial de contaminação em plantas de fumo. Master’s Thesis, Universidade Federal de Pelotas, Pelotas, RS, 2017.
  • Harner, T.; Pozo, K.; Gouin, T.; Macdonald, A. M.; Hung, H.; Cainey, J.; Peters, A. Global Pilot Study for Persistent Organic Pollutants (POPs) Using PUF Disk Passive Air Samplers. Environ. Pollut. 2006, 144, 445–452. DOI: 10.1016/j.envpol.2005.12.053.
  • Zabiegała, B.; Kot-Wasik, A.; Urbanowicz, M.; Namieśnik, J. Passive Sampling as a Tool for Obtaining Reliable Analytical Information in Environmental Quality Monitoring. Anal. Bioanal. Chem. 2010, 396, 273–296. DOI: 10.1007/s00216-009-3244-4.
  • CDC National Institute for Occupational Safety and Healthy. Chlorinated and Organonitrogen Herbicides (Air Sampling) 5602; Manual of Analytical Methods, 4th; Centers for Disease Control and Prevention, Washington, DC, USA, 1998.
  • Phenomenex. Sample Preparation Products. https://www.phenomenex.com/sample-preparation. (accessed Jan 15, 2020).
  • Nishioka, M. G.; Lewis, R. G.; Brinkman, M. C.; Burkholder, H. M.; Hines, C. E.; Menkedick, J. R. Distribution of 2,4-D in Air and on Surfaces inside Residences after Lawn Applications: Comparing Exposure Estimates from Various Media for Young Children. Environ. Health Perspect 2001, 109, 1185–1191. DOI: 10.1289/ehp.011091185.
  • Schreiber, F. Volatilização de clomazone e ocorrência de agrotóxicos e hormônios esteróides na água potável e da chuva de regiões orizícolas do Sul do Brasil. Ph.D. Dissertation, Universidade Federal de Pelotas, Pelotas, RS, 2012.
  • Behbahani, M.; Najafi, F.; Bagheri, S.; Bojdi, M. K.; Hassanlou, P. G.; Bagheri, A. Coupling of Solvent-Based de-Emulsification Dispersive Liquid-Liquid Microextraction with High Performance Liquid Chromatography for Simultaneous Simple and Rapid Trace Monitoring of 2,4-Dichlorophenoxyacetic Acid and 2-Methyl-4-Chlorophenoxyacetic Acid. Environ. Monit. Assess 2014, 186, 2609–2618. DOI: 10.1007/s10661-013-3564-x.
  • Barbosa, S. C. Desenvolvimento D e Métodos Baseados Na DLLME Com Demulsificante Água Para Determinação Multiresíduo De Agrotóxicos E Fármacos E Produtos De Cuidado Pessoal Em Amostras De Água. Escola de Química e Alimentos. Ph.D. Dissertation, Universidade Federal do, Rio Grande, RS, 2015.
  • Coscollà, C.; Hart, E.; Pastor, A.; Yusà, V. LC-MS Characterization of Contemporary Pesticides in PM10 of Valencia Region. Spain. Atmos. Environ 2013, 77, 394–403. DOI: 10.1016/j.atmosenv.2013.05.022.
  • Coscollà, C.; Castillo, M.; Pastor, A.; Yusà, V. Determination of 40 Currently Used Pesticides in Airborne Particulate Matter (PM 10) by Microwave-Assisted Extraction and Gas Chromatography Coupled to Triple Quadrupole Mass Spectrometry. Anal. Chim. Acta 2011, 693, 72–81. DOI: 10.1016/j.aca.2011.03.017.
  • Agência Nacional de Vigilância Sanitária. Dispõe sobre os requisitos mínimos para a validação de métodos bioanalíticos empregados em estudos com fins de registro e pós-registro de medicamentos. http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2012/rdc0027_17_05_2012.html, 2012 (accessed Feb 12, 2020).
  • Boas práticas laboratoriais. Orientações para a atividade de reconhecimento da conformidade aos princípios das boas práticas de laboratório, Orientação sobre Validação de Métodos Analíticos; DOQ-CGCRE-023; Instituto Nacional de Metrologia, Qualidade e Tecnologia: Rio de Janeiro, 2018. http://www.inmetro.gov.br/credenciamento/organismos/doc_organismos.asp?tOrganismo=BPL, 2010 (accessed Jan 25, 2020).
  • European Commission Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed, SANTE/11813/. Eur. Comm. Dir. Heal. Food Saf 2017, 2017, 1–46. DOI: 10.13140/RG.2.2.33021.77283.
  • Senseman, S. A. Herbicide Handbook, 3rd ed.; Weed Science Society of America: Lawrence, KA, 2007.
  • Jandova, R.; Hird, S.; Ross, E.; Van Hulle, M. Determination of Acidic Herbicides in Water Using Liquid Chromatography-Tandem Quadrupole Mass Spectrometry, Waters Corporation Jun, 2018. https://www.waters.com/nextgen/in/en/library/application-notes/2018/acidic-herbicides-water-liquid-chromatography-tandem-quadrupole-mass-spectrometry.html. (accessed Jan 15, 2020).
  • Donato, F. F.; Kemmerich, M.; Facco, J. F.; Friggi, C. A.; Prestes, O. D.; Adaime, M. B.; Zanella, R. Simultaneous Determination of Pesticide and Antibiotic Residues at Trace Levels in Water Samples by SPE and LC-MS/MS. Br. J. Anal. Chem. 2012, 2, 331–340.
  • Chiaradia, M. C.; Collins, C. H.; Jardim, I. C. S. F. O Estado da Arte da Cromatografia Associada à Espectrometria de Massas Acoplada à Espectrometria de Massas na Análise de Compostos Tóxicos em Alimentos. Quím. Nova 2008, 31, 623–636. DOI: 10.1590/S0100-40422008000300030.
  • Lanças, F. M. A. Cromatografia Líquida Moderna e a Espectrometria de Massas: finalmente “compatíveis”?, Sci. Chromatogr. 2009. www.scientiachromatographica.com. (accessed Jan 23, 2020).
  • Schreiber, F.; De Avila, L. A.; Scherner, A.; Moura, D. D. S.; Martini, A. T. Volatilidade de Formulações de Clomazone em Condições de Campo. Rev. Bras. Herbic 2016, 15, 271–280. DOI: 10.7824/rbh.v15i3.475.
  • Dolan, J. W.; Snyder, L. R. Theory and Practice of Gradient Elution Liquid Chromatography. In Liquid Chromatography - Fundamentals and Instrumentation, 2nd ed.; Fanali, S; Haddad, P. R.; Poole, C. F.; Riekkola, M. I., Eds.; Elsevier: Amsterdam, NL, 2017; pp. 389–402. DOI: 10.1016/B978-0-12-805393-5.00015-4.
  • Gómez-Pérez, M. L.; Plaza-Bolaños, P.; Romero-González, R.; Martínez-Vidal, J. L.; Garrido-Frenich, A. Comprehensive Qualitative and Quantitative Determination of Pesticides and Veterinary Drugs in Honey Using Liquid chromatography-Orbitrap High Resolution Mass Spectrometry. J. Chromatogr. A 2012, 1248, 130–138. DOI: 10.1016/j.chroma.2012.05.088.
  • Wang, J.; Chow, W.; Chang, J.; Wong, J. W. Ultrahigh-Performance Liquid Chromatography Electrospray Ionization Q-Orbitrap Mass Spectrometry for the Analysis of 451 Pesticide Residues in Fruits and Vegetables: Method Development and Validation. J. Agric. Food Chem. 2014, 62, 10375–10391. DOI: 10.1021/jf503778c.
  • Martins, M. L.; Kemmerich, M.; Prestes, O. D.; Maldaner, L.; Jardim, I. C. S. F.; Zanella, R. Evaluation of an Alternative Fluorinated Sorbent for Dispersive Solid-Phase Extraction Clean-up of the Quick, Easy, Cheap, Effective, Rugged, and Safe Method for Pesticide Residues Analysis. J. Chromatogr. A 2017, 1514, 36–43. DOI: 10.1016/j.chroma.2017.07.080.
  • Hernández, F.; Sancho, J. V.; Ibáñez, M.; Guerrero, C. Antibiotic Residue Determination in Environmental Waters by LC-MS. Trends Anal. Chem. 2007, 26, 466–485. DOI: 10.1016/j.trac.2007.01.012.
  • Hsiao, J. J.; Potter, O. G.; Chu, T. W.; Yin, H. Improved LC/MS Methods for the Analysis of Metal-Sensitive Analytes Using Medronic Acid as a Mobile Phase Additive. Anal. Chem. 2018, 90, 9457–9464. DOI: 10.1021/acs.analchem.8b02100.
  • Creydt, M.; Fischer, M. Plant Metabolomics: Maximizing Metabolome Coverage by Optimizing Mobile Phase Additives for Nontargeted Mass Spectrometry in Positive and Negative Electrospray Ionization Mode. Anal. Chem. 2017, 89, 10474–10486. DOI: 10.1021/acs.analchem.7b02592.
  • Vaclavik, L.; Vaclavikova, M.; Begley, T. H.; Krynitsky, A. J.; Rader, J. I. Determination of Multiple Mycotoxins in Dietary Supplements Containing Green Coffee Bean Extracts Using Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS). J. Agric. Food Chem. 2013, 61, 4822–4830. DOI: 10.1021/jf401139u.
  • Tette, P. A. S.; Da Silva Oliveira, F. A.; Pereira, E. N. C.; Silva, G.; De Abreu Glória, M. B.; Fernandes, C. Multiclass Method for pesticides quantification in Honey by Means of Modified QuEChERS and UHPLC-MS/MS. Food Chem 2016, 211, 130–139. DOI: 10.1016/j.foodchem.2016.05.036.
  • Trochimczuk, A. W.; Streat, M.; Kolarz, B. N. Highly Polar Polymeric Sorbents. Characterization and Sorptive Properties towards Phenol and Its Derivatives. React. Funct. Polym 2001, 46, 259–271. DOI: 10.1016/S1381-5148(00)00056-0.
  • Kemmerich, M. Resíduos de agrotóxic os em ameixa, maçã. pera e pêssego: desenvolvimento de métodos de análise e monitoramento. Ph.D. Dissertation, Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Santa Maria, RS, 2017.
  • Zhang, G.; Chen, S.; Zhou, W.; Meng, J.; Deng, K.; Zhou, H.; Hu, N.; Suo, Y. Rapid Qualitative and Quantitative Analyses of Eighteen Phenolic Compounds from Lycium Ruthenicum Murray by UPLC-Q-Orbitrap MS and Their Antioxidant Activity. Food Chem. 2018, 269, 150–156. DOI: 10.1016/j.foodchem.2018.06.132.
  • Hassan, J.; Shamsipur, M.; Es’haghi, A.; Fazili, S. Determination of Chlorophenoxy Acid Herbicides in Water Samples by Suspended Liquid-Phase Microextraction-Liquid Chromatography. Chromatographia 2011, 73, 999–1003. DOI: 10.1007/s10337-011-1973-y.
  • Tsai, W. C.; Da Huang, S. Dispersive Liquid-Liquid-Liquid Microextraction Combined with Liquid Chromatography for the Determination of Chlorophenoxy Acid Herbicides in Aqueous Samples. J. Chromatogr. A 2009, 1216, 7846–7850. DOI: 10.1016/j.chroma.2009.09.057.
  • Caldas, S. S.; Bolzan, C. M.; Guilherme, J. R.; Silveira, M. A. K.; Escarrone, A. L. V.; Primel, E. G. Determination of Pharmaceuticals, Personal Care Products, and Pesticides in Surface and Treated Waters: Method Development and Survey. Environ. Sci. Pollut. Res. 2013, 20, 5855–5863. DOI: 10.1007/s11356-013-1650-9.
  • OSHA. Versatile Sampler (OVS) Tubes, SKC. https://www.skcinc.com/catalog/index.php?cPath=200000000_201000000_201100000_201100200. (accessed Jan 20, 2020).
  • Armenta, S.; De Guardia, M.; Esteve-Turrillas, F. A. Environmental Applications (Air). In Solid-Phase Extraction; Poole, C. F., Ed.; Elsevier: Cambridge, 2020; pp 647–671. DOI: 10.1016/B978-0-12-816906-3.00024-8.
  • López, A.; Coscollà, C.; Yusà, V. Evaluation of Sampling Adsorbents and Validation of a LC-HRMS Method for Determination of 28 Airborne Pesticides. Talanta 2018, 189, 211–219. DOI: 10.1016/j.talanta.2018.06.078.
  • Coscollà, C. Yusà, v. Pesticides and Agricultural Air Quality. In Comprehensive Analytical Chemistry; De La Guardia, M. E.; Armenta, S.; Eds.; Elsevier: Amsterdam, NT, 2016; Vol. 73, pp. 423–490.
  • Harner, T.; Farrar, N. J.; Shoeib, M.; Jones, K. C.; Gobas, F. A. Characterization of Polymer-Coated Glass as a Passive Air Sampler for Persistent Organic Pollutants. Environ. Sci. Technol. 2003, 37, 2486–2493. DOI: 10.1021/es0209215.
  • Jaward, F. M.; Farrar, N. J.; Harner, T.; Sweetman, A. J.; Jones, K. C. Passive Air Sampling of PCBs, PBDEs, and Organochlorine Pesticides across Europe. Environ. Sci. Technol. 2004, 38, 34–41. DOI: 10.1021/es034705n.
  • Mazzella, N.; Lissalde, S.; Moreira, S.; Delmas, F.; Mazellier, P.; Huckins, J. N. Evaluation of the Use of Performance Reference Compounds in an Oasis-HLB Adsorbent Based Passive Sampler for Improving Water Concentration Estimates of Polar Herbicides in Freshwater. Environ. Sci. Technol. 2010, 44, 1713–1719. DOI: 10.1021/es902256m.
  • WATERS. Oasis HLB 1 cc Vac Cartridge, 30 mg Sorbent per Cartridge, 30 µm, 100/pk - WAT094225. https://www.waters.com/nextgen/br/pt/shop/sample-preparation–filtration/wat094225-oasis-hlb-1-cc-vac-cartridge-30-mg-sorbent-per-cartridge-30–m-1.html. (accessed May 3, 2021).
  • WATERS. Oasis Sample Extraction Products Purity by SPE. https://www.waters.com/waters/en_US/Waters-Oasis-Sample-Extraction-SPE-Products/nav.htm?cid=513209&locale=en_US. (acessed May 1, 2021).
  • Kemmerich, M.; Rizzetti, T. M.; Martins, M. L.; Prestes, O. D.; Adaime, M. B.; Zanella, R. Optimization by Central Composite Design of a Modified QuEChERS Method for Extraction of Pesticide Multiresidue in Sweet Pepper and Analysis by Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Food Anal. Methods 2015, 8, 728–739. DOI: 10.1007/s12161-014-9951-2.
  • Bassarab, P.; Williams, D.; Dean, J. R.; Ludkin, E.; Perry, J. J. Determination of Quaternary Ammonium Compounds in Seawater Samples by Solid-Phase Extraction and Liquid Chromatography–Mass Spectrometry. J. Chromatogr. A. 2011, 1218, 673–677. DOI: 10.1016/j.chroma.2010.11.088.
  • Belles, A.; Alary, C.; Laguerre, N.; Franke, C. Analyzing the Uncertainty of Diffusive Gel-Based Passive Samplers as Tools for Evaluating the Averaged Contamination of Surface Water by Organic Pollutants. Environ. Sci. Pollut. Res. 2018, 25, 20231–20240. DOI: 10.1007/s11356-018-2246-1.
  • Hageman, K. J.; Aebig, C. H.; Luong, K. H.; Kaserzon, S. L.; Wong, C. S.; Reeks, T.; Matthaei, C. D. Current-Use Pesticides in New Zealand Streams: comparing Results from Grab Samples and Three Types of Passive Samplers. Environ. Pollut. 2019, 254, 112973. DOI: 10.1016/j.envpol.2019.112973.
  • Kaserzon, S. L.; Hawker, D. W.; Kennedy, K.; Bartkow, M.; Carter, S.; Booij, K.; Mueller, J. F. Characterisation and Comparison of the Uptake of Ionizable and Polar Pesticides, Pharmaceuticals and Personal Care Products by POCIS and Chemcatchers. Environ. Sci. Processes Impacts 2014, 16, 2517–2526. DOI: 10.1039/C4EM00392F.
  • Odraska, P.; Dolezalova, L.; Piler, P.; Oravec, M.; Blaha, L. Utilization of the Solid Sorbent Media in Monitoring of Airborne Cyclophosphamide Concentrations and the Implications for Occupational Hygiene. J. Environ. Monit. 2011, 13, 1480–1487. DOI: 10.1039/c0em00660b.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.