Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 57, 2022 - Issue 11
171
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Effects of sepiolite and biochar on the photosynthetic and antioxidant systems of pakchoi under Cd and atrazine stress

, , , , , , , & show all

References

  • Lux, A.; Martinka, M.; Vaculík, M.; White, P. J. Root responses to cadmium in the rhizosphere: a review. J. Exp. Bot. 2011, 62, 21–37. DOI: 10.1093/jxb/erq281.
  • Chaves, L. H. G.; Estrela, M. A.; Souza, R. S. Effect on plant growth and heavy metal accumulation by sunflower. J. Phycol. 2011, 3, 4–9.
  • Li, Y.; Zhang, X. L.; Yang, Y. Q.; Duan, B. L. Soil cadmium toxicity and nitrogen deposition differently affect growth and physiology in Toxicodendron vernicuum seedlings. Acta Physiol. Plant 2013, 35, 529–540. DOI: 10.1007/s11738-012-1094-8.
  • DalCorso, G. Heavy metal toxicity in plants. In Plants and Heavy Metals. Fufini A. Eds.; Springer Press, London, 2012; 1–26.
  • Schützendübel, A.; Polle, A. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 2002, 53, 1351–1365. DOI: 10.1093/jexbot/53.372.1351.[PMC].[11997381.
  • Shah, F. R.; Ahmad, N.; Masood, K. R. Heavy metal toxicity in plants. In Plant Adaptation and Phytoremediation. Ashraf, M.; Ozturk, M.; Ahmad, M. S. A. Eds.; Springer Press, New York, 2010; 71–97
  • Mahler, B. J.; Van Metre, P. C.; Burley, T. E.; Loftin, K. A.; Meyer, M. T.; Nowell, L. H. Similarities and differences in occurrence and temporal fluctuations in glyphosate and atrazine in small midwestern streams USA during the 2013 growing season. Sci. Total Environ. 2017, 579, 149–158. DOI: 10.1016/j.scitotenv.2016.10.236.
  • Scott, C.; Jackson, C. J.; Coppin, C. W.; Mourant, R. G.; Hilton, M. E.; Sutherland, T. D.; Russell, R. J.; Oakeshott, J. G. Catalytic improvement and evolution of atrazine chlorohydrolase. Appl. Environ. Microbiol. 2009, 75, 2184–2191. DOI: 10.1128/aem.02634-08.
  • Shaba, S. A.; Yehia, Z.; Safina, S.; El-Hassan, R. A. Effect of some maize herbicides on weeds and yield and residual effect on some following crops (wheat and broad bean). Am-Eurasian J. Agricul. Environ. Sci. 2015, 15, 1004–1011. DOI: 10.5829/idosi.aejaes.2015.15.6.12676.
  • Barchanska, H.; Sajdak, M.; Szczypka, K.; Swientek, A.; Tworek, M.; Kurek, M. Atrazine, Triketone herbicides, and their degradation products in sediment, soil and surface water samples in Poland. Environ. Sci. Pollut. Res. Int. 2017, 24, 644–658. DOI: 10.1007/s11356-016-7798-3.
  • Cavas, T. In vivo genotoxicity evaluation of atrazine and atrazine-based herbicide on fish carassius auratus using the micronucleus test and the comet assay. Food Chem. Toxicol. 2011, 49, 1431–1435. DOI: 10.1016/j.fct.2011.03.038.
  • Chaney, R. L. How does contamination of rice soils with Cd and Zn Cause high incidence of human Cd disease in subsistence rice farmers. Curr. Pollut. Rep. 2015, 1, 13–22. DOI: 10.1007/s40726-015-0002-4.
  • Khan, K. Y.; Ali, B.; Cui, X.; Feng, Y.; Stoffella, P. J.; Tang, L.; Yang, X. Effect of humic acid amendment on cadmium bioavailability and accumulation by pakchoi (Brassica Rapa Ssp. Chinensis L.) to alleviate dietary toxicity risk. Arch. Agron. Soil Sci. 2017, 63, 1431–1442. DOI: 10.1080/03650340.2017.1283018.
  • Moore, M. T.; Locke, M. A. Phytotoxicity of atrazine, s-metolachlor, and permethrin to Typha Latifolia (linneaus) germination and seedling growth. Bull. Environ. Contam. Toxicol. 2012, 89, 292–295. DOI: 10.1007/s00128-012-0682-z.
  • Otitoloju, A. A. Evaluation of the joint-action toxicity of binary mixtures of heavy metals against the mangrove periwinkle Tympanotonus Fuscatus Var Radula (L.). Ecotox. Environ. Safe 2002, 53, 404–415. DOI: 10.1016/S0147-6513(02)00032-5.
  • Zhao, Y. P.; Tan, Y. Y.; Guo, Y.; Gu, X. Y.; Wang, X. R.; Zhang, Y. Interactions of tetracycline with Cd(II), Cu(II) and Pb(II) and their cosorption behaviour in soils. Environ. Pollut. 2013, 180, 206–213. DOI: 10.1016/j.envpol.2013.05.043.
  • Xu, Y.; Liang, X.; Xu, Y.; Qin, X.; Huang, Q.; Wang, L.; Sun, Y. Remediation of heavy metal-polluted agricultural soils using clay minerals: a review. Pedosphere 2017, 27, 193–204. DOI: 10.1016/S1002-0160(17)60310-2.
  • Bian, R. J.; Li, L. Q.; Bao, D. D.; Zheng, J. W.; Zhang, X. H.; Zheng, J. F.; Liu, X. Y.; Cheng, K.; Pan, G. X. Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar. Environ. Sci. Pollut. Res. Int. 2016, 23, 10028–10036. DOI: 10.1007/s11356-016-6214-3.
  • Yin, X. L.; Xu, Y. M.; Huang, R.; Huang, Q. Q.; Xie, Z. L.; Cai, Y. M.; Liang, X. F. Remediation mechanisms for Cd-contaminated soil using natural sepiolite at the field scale. Environ. Sci. Process Impacts 2017, 19, 1563–1570. DOI: 10.1039/c7em00262a.
  • Suárez, M.; García-Romero, E. Chapter 2 - Advances in the crystal chemistry of sepiolite and palygorskite. In Developments in Palygorskite-Sepiolite Research; Singer, A.; Galan, E. Eds.; Amsterdam, Elsevier, 2011; 33–65
  • Akçay, M. FT-IR spectroscopic investigation of the adsorption pyridine on the raw sepiolite and Fe-pillared sepiolite from anatolia. J. Mol. Struct. 2004, 694, 21–26. DOI: 10.1016/j.molstruc.2004.01.010.
  • Tekin, N.; Dinçer, A.; Demirbaş, Ö.; Alkan, M. Adsorption of cationic polyacrylamide onto sepiolite. J Hazard Mater. 2006, 134, 211–219. DOI: 10.1016/j.jhazmat.2005.11.005.
  • Amarasinghe, H. A. H. I.; Gunathilake, S. K.; Karunarathna, A. K. Ascertaining of optimum pyrolysis conditions in producing refuse tea biochar as a soil amendment. Procedia. Food Sci. 2016, 6, 97–102. DOI: 10.1016/j.profoo.2016.02.021.
  • Hu, X. L.; Xue, Y. W.; Long, L.; Zhang, K. J. Characteristics and batch experiments of acid and alkali-modified corncob biomass for nitrate removal from aqueous solution. Environ. Sci. Pollut. Res. Int. 2018, 25, 19932–19940. DOI: 10.1007/s11356-018-2198-5.
  • Vithanage, M.; Herath, I.; Joseph, S.; Bundschuh, J.; Bolan, N.; Ok, Y. S.; Kirkham, M. B.; Rinklebe, J. Interaction of arsenic with biochar in soil and water: a critical review. Carbon 2017, 113, 219–230. DOI: 10.1016/j.carbon.2016.11.032.
  • Wang, G.; Zhang, S.; Zhong, Q.; Xu, X.; Li, T.; Jia, Y.; Zhang, Y.; Peijnenburg, W. J. G. M.; Vijver, M. G. Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties. Sci. Total Environ. 2018, 625, 1021–1029. DOI: 10.1016/j.scitotenv.2018.01.019.
  • Qin, X.; Liu, Y. T.; Huang, Q. Q.; Liu, Y. Y.; Zhao, L. J.; Xu, Y. M. In-situ remediation of cadmium and atrazine contaminated acid red soil of south china using sepiolite and biochar. Bull. Environ. Contam. Toxicol. 2019, 102, 128–133. DOI: 10.1007/s00128-018-2494-2.
  • Qin, X.; Huang, Q. Q.; Liu, Y. Y.; Zhao, L. J.; Xu, Y. M.; Liu, Y. T. Effects of sepiolite and biochar on microbial diversity in acid red soil from Southern China. Chem. Ecol. 2019, 35, 846–860. DOI: 10.1080/02757540.2019.1648441.
  • Qin, X.; Liu, Y. T.; Huang, Q. Q.; Zhao, L. J.; Xu, Y. M.; Wang, L. Effects of sepiolite and biochar on enzyme activity of soil contaminated by Cd and atrazine. Bull. Environ. Contam. Toxicol. 2020, 104, 642–648. DOI: 10.1007/s00128-020-02833-w.
  • Blasing, O. E.; Gibon, Y.; Gunther, M.; Höhne, M.; Morcuende, R.; Osuna, D.; Thimm, O.; Usadel, B.; Scheible, W.; Stitt, M. Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell 2005, 17, 3257–3281. DOI: 10.1105/tpc.105.035261.
  • Zobiole, L. H. S.; Oliveira, R. S.; Visentainer, J. V.; Kremer, R. J.; Bellaloui, N.; Yamada, T. Glyphosate affects seed composition in glyphosate-resistant soybean. J. Agric. Food Chem. 2010, 58, 4517–4522. DOI: 10.1021/jf904342t.
  • Liu, N.; Zhong, G. D.; Zhou, J. A.; Liu, Y. L.; Pang, Y. J.; Cai, H.; Wu, Z. H. Separate and combined effects of glyphosate and copper on growth and antioxidative enzymes in Salvinia Natans (L.) All. Sci. Total Environ. 2019, 655, 1448–1456. DOI: 10.1016/j.scitotenv.2018.11.213.
  • Rivera-Becerril, F.; Calantzis, C.; Turnau, K.; Caussanel, J. P.; Belimov, A. A.; Gianinazzi, S.; Strasser, R. J.; Gianinazzi-Pearson, V. Cadmium accumulation and buffering of cadmium-induced stress by Arbuscular Mycorrhiza in three Pisum Sativum L. genotypes. J. Exp. Bot. 2002, 53, 1177–1185. DOI: 10.1093/jexbot/53.371.1177.
  • Sergiev, I. G.; Alexieva, V. S.; Ivanov, S. V.; Moskova, I. I.; Karanov, E. N. The Phenylurea Cytokinin 4PU-30 Protects Maize Plants against Glyphosate Action. Pestic. Biochem. Phys 2006, 85, 139–146. DOI: 10.1016/j.pestbp.2006.01.001.
  • Iqbal, N.; Masood, A.; Nazar, R.; Syeed, S.; Khan, N. A. Photosynthesis, growth and antioxidant metabolism in mustard (Brassica Juncea L.) cultivars differing in cadmium tolerance. Agr. Sci. China 2010, 9, 519–527. DOI: 10.1016/S1671-2927(09)60125-5.
  • Chugh, L. K.; Sawhney, S. K. Effect of cadmium on activities of some enzymes of glycolysis and pentose phosphate pathway in pea. Biol. Plant 1999, 42, 401–407. DOI: 10.1023/A:1002417319599.
  • Krupa, Z.; Oquist, G.; Huner, N. P. A. The effects of cadmium on photosynthesis of Phaseolus Vulgaris - a fluorescence analysis. Physiol. Plant. 1993, 88, 626–630. DOI: 10.1034/j.1399-3054.1993.880414.x.
  • Hattab, S.; Dridi, B.; Chouba, L.; Kheder, M. B.; Bousetta, H. Photosynthesis and growth responses of pea Pisum Sativum L. under heavy metals stress. J. Environ. Sci. (China) 2009, 21, 1552–1556. DOI: 10.1016/s1001-0742(08)62454-7.[PMC].[20108689.
  • Bragança, I.; Lemos, P. C.; Barros, P.; Delerue-Matos, C.; Domingues, V. F. Phytotoxicity of pyrethroid pesticides and its metabolite towards Cucumis Sativus. Sci. Total Environ. 2018, 619–620, 685–691. DOI: 10.1016/j.scitotenv.2017.11.164.[PMC].[29156286.
  • Pieters, A. J.; Paul, M. J.; Lawlor, D. W. Low sink demand limits photosynthesis under Pi deficiency. J. Exp. Bot. 2001, 52, 1083–1091. DOI: 10.1093/jexbot/52.358.1083.
  • Lushchak, V. I. Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2011, 153, 175–190. DOI: 10.1016/j.cbpc.2010.10.004.
  • Zhang, S. R.; Lin, H. C.; Deng, L. J.; Gong, G. S.; Jia, Y. X.; Xu, X. X.; Li, T.; Li, Y.; Chen, H. Cadmium tolerance and accumulation characteristics of Siegesbeckia Orientalis L. Ecol. Eng. 2013, 51, 133–139. DOI: 10.1016/j.ecoleng.2012.12.080.
  • He, J.; Ji, Z. X.; Wang, Q. Z.; Liu, C. F.; Zhou, Y. B. Effect of Cu and Pb pollution on the growth and antioxidant enzyme activity of Suaeda Heteropteran. Ecol. Eng. 2016, 87, 102–109. DOI: 10.1016/j.ecoleng.2015.11.004.
  • Qin, Y.; Druzhinina, I. S.; Pan, X. Y.; Yuan, Z. L. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol. Adv. 2016, 34, 1245–1259. DOI: 10.1016/j.biotechadv.2016.08.005.
  • Shohael, A. M.; Ali, M. B.; Yu, K. W.; Hahn, E. J.; Islam, R.; Paek, K. Y. Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus Senticosus somatic embryos in bioreactor. Process. Biochem. 2006, 41, 1179–1185. DOI: 10.1016/j.procbio.2005.12.015.
  • Sánchez, C. Reactive oxygen species and antioxidant properties from mushrooms. Synth. Syst. Biotechnol. 2017, 2, 13–22. DOI: 10.1016/j.synbio.2016.12.001.
  • Kapoor, D.; Singh, S.; Kumar, V.; Romero, R.; Prasad, R.; Singh, J. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 2019, 19, 100182. DOI: 10.1016/j.plgene.2019.100182.
  • Gomes, M. P.; Le Manac’h, S. G.; Maccario, S.; Labrecque, M.; Lucotte, M.; Juneau, P. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on Photosynthesis and chlorophyll metabolism in willow plants. Pestic. Biochem. Physiol. 2016, 130, 65–70. DOI: 10.1016/j.pestbp.2015.11.010.
  • Bashri, G.; Prasad, S. M. Exogenous IAA differentially affects growth, oxidative stress and antioxidants system in Cd stressed Trigonella Foenum-Graecum L. seedlings: toxicity alleviation by up-regulation of ascorbateglutathione cycle. Ecotox. Environ. Safe 2016, 132, 329–338. DOI: 10.1016/j.ecoenv.2016.06.015.
  • Zhou, J. H.; Cheng, K.; Huang, G. M.; Chen, G. C.; Zhou, S. B.; Huang, Y. J.; Zhang, J.; Duan, H. L.; Fan, H. B. Effects of exogenous 3-indoleacetic acid and cadmium stress on the physiological and biochemical characteristics of Cinnamomum camphora. Ecotoxicol. Environ. Saf. 2020, 191, 109998. DOI: 10.1016/j.ecoenv.2019.109998.
  • Wang, Q. H.; Que, X. E.; Zheng, R. L.; Pang, Z.; Li, C.; Xiao, B. Phytotoxicity assessment of atrazine on growth and physiology of three emergent plants. Environ. Sci. Pollut. Res. Int. 2015, 22, 9646–9657. DOI: 10.1007/s11356-015-4104-8.
  • Alberto, D.; Serra, A.; Sulmon, C.; Gouesbet, G.; Couée, I. Herbicide-related signaling in plants reveals novel insights for herbicide use strategies, environmental risk assessment and global change assessment challenges. Sci. Total Environ. 2016, 569–570, 1618–1628. DOI: 10.1016/j.scitotenv.2016.06.064.[PMC].[27318518.
  • Sofo, A.; Dichio, B.; Xiloyannis, C.; Masia, A. Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree. Plant Sci. 2004, 166, 293–302. DOI: 10.1016/j.plantsci.2003.09.018.
  • Wang, S. Y.; Ballington, J. R. Free radical scavenging capacity and antioxidant enzyme activity in deerberry (Vaccinium Stamineum L.). LWT-Food Sci. Technol. 2007, 40, 1352–1361. DOI: 10.1016/j.lwt.2006.09.005.
  • Sun, Y. B.; Sun, G. H.; Xu, Y. M.; Liu, W. T.; Liang, X. F.; Wang, L. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium-contaminated soils. J. Environ. Manage 2016, 166, 204–210. DOI: 10.1016/j.jenvman.2015.10.017.
  • Huang, L. P.; Jia, J.; Zhao, X. X.; Zhang, M. Y.; Huang, X. X.; Ji, E.; Ni, L.; Jiang, M. Y. The ascorbate peroxidase APX1 is a direct target of a zinc finger transcription factor ZFP36 and a late embryogenesis abundant protein Oslea5 interacts with ZFP36 to co-regulate Osapx1 in seed germination in rice. Biochem. Biophys. Res. Commun. 2018, 495, 339–345. DOI: 10.1016/j.bbrc.2017.10.128.
  • Tschiersch, H.; Ohmann, E. Photoinhibition in Euglena Gracilis: involvement of reactive oxygen species. Planta 1993, 191, 316–323. DOI: 10.1007/BF00195688.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.