Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 58, 2023 - Issue 3
292
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Single and mixed exposure to distinct groups of pesticides suggests endocrine disrupting properties of imidacloprid in zebrafish embryos

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Yuan, X.; Shen, J.; Zhang, X.; Tu, W.; Fu, Z.; Jin, Y. Imidacloprid Disrupts the Endocrine System by Interacting with Androgen Receptor in Male Mice. Sci Total Environ. 2020, 708, 135163. DOI: 10.1016/j.scitotenv.2019.135163.
  • Bartlett, A. J.; Hedges, A. M.; Intini, K. D.; Brown, L. R.; Maisonneuve, F. J.; Robinson, S. A.; Gillis, P. L.; Solla, S. R. Lethal and Sublethal Toxicity of Neonicotinoid and Butenolide Insecticides to the Mayfly, Hexagenia Spp. Environ. Pollut. 2018, 238, 63–75. DOI: 10.1016/j.envpol.2018.03.004.
  • Mikolić, A.; Karačonji, I. B. Imidacloprid Reproductive Toxicity and Endocrine Disruption in Lab Animals. Arh. Hig. Rada Toksikol. 2018, 69, 103–108. DOI: 10.2478/aiht-2018-69-3144.
  • Luo, T.; Wang, X.; Jin, Y. Low Concentrations of Imidacloprid Exposure Induced Gut Toxicity in Adult Zebrafish (Danio rerio). Comp. Biochem. Physiol. Part C 2021, 241, 108972. DOI: 10.1016/j.cbpc.2020.108972.
  • Queiroz, L. C.; Prado, C. C. A.; Almeida, E. C.; Dörr, F. A.; Pinto, E.; Silva, F. T.; Paiva, T. C. B. Responses of Aquatic Nontarget Organisms in Experiments Simulating a Scenario of Contamination by Imidacloprid in a Freshwater Environment. Arch. Environ. Contam. Toxicol. 2021, 80, 437–449. DOI: 10.1007/s00244-020-00782-3.
  • The Pesticide Manual: A World Compendium; Turner, J.A., Ed., 17th ed.; British Crop Production Council: Hampshire, 2015.
  • Bal, R.; Naziroglu, M.; Türk, G.; Yilmaz, O.; Kuloglu, T.; Etem, E.; Baydas, G. Insecticide Imidacloprid Induces Morphological and DNA Damage through Oxidative Toxicity on the Reproductive Organs of Developing Male Rats. Cell Biochem. Funct. 2012, 30, 492–499. DOI: 10.1002/cbf.2826.
  • Bal, R.; Türk, G.; Tuzcu, M.; Yilmaz, O.; Kuloglu, T.; Gundogdu, R.; Gür, S.; Agca, A.; Ulas, M.; Cambay, Z.; et al. Assessment of Imidacloprid Toxicity on Reproductive Organ System of Adult Male Rats. J. Environ. Sci. Health B 2012, 47, 434–444. DOI: 10.1080/03601234.2012.663311.
  • Gill, R. J.; Ramos-Rodriguez, O.; Raine, N. E. Combined Pesticide Exposure Severely Affects Individual- and Colony-Level Traits in Bees. Nature 2012, 491, 105–108. DOI: 10.1038/nature11585.
  • Baines, D.; Wilton, E.; Pawluk, A.; Gorter, M.; Chomistek, N. Neonicotinoids Act like Endocrine Disrupting Chemicals in Newly-Emerged and Winter Bees. Sci. Rep. 2017, 7, 10979. DOI: 10.1038/s41598-017-10489-6.
  • Kapoor, U.; Srivastava, M. K.; Bhardwaj, S.; Srivastava, L. P. Effect of Imidacloprid on Antioxidant Enzymes and Lipid Peroxidation in Female Rats to Derive It’s No Observed Effect Level (NOEL). J. Toxicol. Sci. 2010, 35, 577–581. DOI: 10.2131/jts.35.577.
  • Kapoor, U.; Srivastava, M. K.; Srivastava, L. P. Toxicological Impact of Technical Imidacloprid on Ovarian Morphology, Hormones and Antioxidant Enzymes in Female Rats. Food Chem. Toxicol. 2011, 49, 3086–3089. DOI: 10.1016/j.fct.2011.09.009.
  • Bal, R.; Türk, G.; Yilmaz, O.; Etem, E.; Kuloglu, T.; Baydas, G.; Naziroğlu, M. Effects of Clothianidin Exposure on Sperm Quality, Testicular Apoptosis and Fatty Acid Composition in Developing Male Rats. Cell Biol. Toxicol. 2012, 28, 187–200. DOI: 10.1007/s10565-012-9215-0.
  • Gu, Y. H.; Li, Y.; Huang, X. F.; Zheng, J. F.; Yang, J.; Diao, H.; Yuan, Y.; Liu, M.; Shi, H. J.; Xu, W. P. Reproductive Effects of Two Neonicotinoid Insecticides on Mouse Sperm Function and Early Embryonic Development in Vitro. PLOS One 2013, 8, e70112. DOI: 10.1371/journal.pone.0070112.
  • Siddique, S.; Syed, Q.; Adnan, A.; Qureshi, F. A. Isolation, Characterization and Selection of Avermectin-Producing Streptomyces avermitilis Strains from Soil Samples. Jundishapur J Microbiol 2014, 7, e10366. DOI: 10.5812/jjm.10366.
  • Mesa, L. M.; Lindt, I.; Negro, L.; Gutierrez, M. F.; Mayora, G.; Montalto, L.; Lifschitz, A. Aquatic Toxicity of Ivermectin in Cattle Dung Assessed Using Microcosms. Ecotoxicol. Environ. Saf. 2017, 144, 422–429. DOI: 10.1016/j.ecoenv.2017.06.016.
  • Novelli, A.; Vieira, B. H.; Braun, A. S.; Mendes, L. B.; Daam, M. A.; Espíndola, E. L. G. Impact of Runoff Water from an Experimental Agricultural Field Applied with Vertimec® 18EC (Abamectin) on the Survival, Growth and Gill Morphology of Zebrafish Juveniles. Chemosphere 2016, 144, 1408–1414. DOI: 10.1016/j.chemosphere.2015.10.004.
  • Novelli, A.; Vieira, B. H.; Cordeiro, D.; Cappelini, L. T. D.; Vieira, E. M.; Espindola, E. L. G. Lethal Effects of Abamectin on the Aquatic Organisms Daphnia Similis, Chironomus Xanthus and Danio rerio. Chemosphere 2012, 286, 36–40. DOI: 10.1016/j.chemosphere.2011.08.047.
  • Zortéa, T.; Segat, J. C.; Maccari, A. P.; Sousa, J. P.; Da Silva, A. S.; Baretta, D. Toxicity of Four Veterinary Pharmaceuticals on the Survival and Reproduction of Folsomia Candida in Tropical Soils. Chemosphere 2017, 173, 460–465. DOI: 10.1016/j.chemosphere.2017.01.069.
  • Sanches, A. L. M.; Daam, M. A.; Freitas, E. C.; Godoy, A. A.; Meireles, G.; Almeida, A. R.; Domingues, I.; Espíndola, E. L. G. Lethal and Sublethal Toxicity of Abamectin and Difenoconazole (Individually and in Mixture) to Early Life Stages of Zebrafish. Chemosphere 2018, 210, 531–538. DOI: 10.1016/j.chemosphere.2018.07.027.
  • Moura, M. A. M.; Oliveira, R.; Jonsson, C. M.; Domingues, I.; Soares, A.; Nogueira, A. J. A. The Sugarcane Herbicide Ametryn Induces Oxidative Stress and Developmental Abnormalities in Zebrafish Embryos. Environ. Sci. Pollut. Res. 2018, 25, 13416–13425. DOI: 10.1007/s11356-017-9614-0.
  • Sanches, A. L. M.; Vieira, B. H.; Reghini, M. V.; Moreira, R. A.; Freitas, E. C.; Espíndola, E. L. G.; Daam, M. A. Single and Mixture Toxicity of Abamectin and Difenoconazole to Adult Zebrafish (Danio rerio). Chemosphere 2017, 188, 582–587. DOI: 10.1016/j.chemosphere.2017.09.027.
  • Lechinovski, L.; Bados, M.; Rosa, J.; Moda, D. B.; Krawczyk, A. Ecotoxicological Effects of Conventional Herbicides and a Natural Herbicide on Freshwater Fish (Danio rerio). J. Environ. Sci. Health B 2022, 57, 812–820. DOI: 10.1080/03601234.2022.2122664.
  • Chang, Y.; Mao, L.; Zhang, L.; Zhang, Y.; Jiang, H. Combined Toxicity of Imidacloprid, Acetochlor, and Tebuconazole to Zebrafish (Danio rerio): Acute Toxicity and Hepatotoxicity Assessment. Environ. Sci. Pollut. Res. 2020, 27, 10286–10295. DOI: 10.1007/s11356-020-07653-3.
  • Braunbeck, T.; Bottcher, M.; Hollert, H.; Kosmehl, T.; Lammer, E.; Leist, E.; Rudolf, M.; Seitz, N. Towards an Alternative for the Acute Fish LC50 Test in Chemical Assessment: The Fish Embryo Toxicity Test Goes Multi-Species – an Update. ALTEX 2005, 22, 87–102.
  • Kari, G.; Rodeck, U.; Dicker, A. P. Zebrafish: An Emerging Model System for Human Disease and Drug Discovery. Clin. Pharmacol Ther. 2007, 82, 70–80. DOI: 10.1038/sj.clpt.6100223.
  • Bambino, K.; Chu, J. Zebrafish in Toxicology and Environmental Health. Curr. Top Dev. Biol. 2017, 124, 331–367. DOI: 10.1016/bs.ctdb.2016.10.007.
  • Busquet, F.; Braunbeck, T.; Lillicrap, A.; Kleensang, A.; Belanger, S.; Gregory, J. C.; Walter, R. Test No. 236: Fish Embryo Acute Toxicity (FET) Test, OECD Guidelines for the Testing of Chemicals. Section 2; OECD Publishing: Paris, 2013.
  • Mineau, P.; Palmer, C. The Impact of the Nation’s Most Widely Used Insecticides on Birds. American Bird Conservancy: Washington, 2013; pp. 43–44.
  • Van der Brink, P. J.; Van Smeden, J. M.; Bekele, R. S.; Dierick, W.; De Gelder, D. M.; Noteboom, M.; Roessink, I. Acute and Chronic Toxicity of Neonicotinoids to Nymphs of a May Fly Species and Some Notes on Seasonal Differences. Environ. Toxicol. Chem. 2016, 35, 128–133. DOI: 10.1016/j.scitotenv.2019.06.028.
  • Hong, X.; Zha, J. Fish Behavior: A Promising Model for Aquatic Toxicology Research. Sci. Total Environ. 2019, 686, 311–321. DOI: 10.1016/j.scitotenv.2019.06.028.
  • USEPA. Method 8321B: Solvent-Extractable Nonvolatile Compounds by High-Performance Liquid Chromatography/Thermospray/Mass Spectrometry (HPLC/TS/MS) or Ultraviolet (UV) Detection. https://www.epa.gov/sites/dault/files/2015-12/documents/8321b.pdf (Accessed November 25, 2022).
  • Hamilton, M. A.; Russo, R. C.; Thurston, R. V. Trimmed Spearman-Karber Method for Estimating Median Lethal Concentrations in Toxicity Bioassays. Environ. Sci. Technol. 1977, 11, 714–719. DOI: 10.1021/es60130a004..
  • Wu, S.; Li, X.; Liu, X.; Yang, G.; An, X.; Wang, Q.; Wang, Y. Joint Toxic Effects of Triazophos and Imidacloprid on Zebrafish (Danio rerio). Environ. Pollut. 2018, 235, 470–481. DOI: 10.1016/j.envpol.2017.12.120.
  • Sposito, J. C. V.; Montagner, C. C.; Casado, M.; Navarro-Martín, L.; Solórzano, J. C. J.; Piña, B.; Grisolia, A. B. Emerging Contaminants in Brazilian Rivers: Occurrence and Effects on Gene Expression in Zebrafish (Danio rerio) Embryos. Chemosphere 2018, 209, 696–704. DOI: 10.1016/j.chemosphere.2018.06.046.
  • Masiá, A.; Campo, J.; Navarro-Ortega, A.; Barceló, D.; Picó, Y. Pesticide Monitoring in the Basin of Llobregat River (Catalonia, Spain) and Comparison with Historical Data. Sci. Total Environ. 2015, 503–504, 58–68. DOI: 10.1016/j.scitotenv.2014.06.095.
  • Richardson, S. D.; Ternes, T. A. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2018, 90, 398–428. DOI: 10.1021/acs.analchem.7b04577.
  • Hayasaka, D.; Korenaga, T.; Suzuki, K.; Saito, F.; Sánchez-Bayo, F.; Goka, K. Cumulative Ecological Impacts of Two Successive Annual Treatments of Imidacloprid and Fipronil on Aquatic Communities of Paddy Mesocosms. Ecotoxicol. Environ. Saf. 2012, 80, 355–362. DOI: 10.1016/j.ecoenv.2012.04.004.
  • Vignet, C.; Cappello, T.; Fu, Q.; Lajoie, K.; De Marco, G.; Clerandeau, C.; Hélène Mottaz, H.; Maisano, M.; Hollender, J.; Schirmer, K.; Cachot, J. Imidacloprid Induces Adverse Effects on Fish Early Life Stages That Are More Severe in Japanese Medaka (Oryzias Latipes) than in Zebrafish (Danio rerio). Chemosphere 2019, 225, 470–478. DOI: 10.1016/j.chemosphere.2019.03.002.
  • Morissey, C. A.; Mineau, P.; Devries, J. H.; Sanchez-Bayo, F.; Liess, M.; Cavallaro, M. C.; Liber, K. Neonicotinoid Contamination of Global Surface Waters and Associated Risk to Aquatic Invertebrates: A Review. Environ Int 2015, 74, 291–303. DOI: 10.1016/j.envint.2014.10.024.
  • Van Dijk, T. C.; Van Staalduinen, M. A.; Van der Sluijs, J. P. Macroinvertebrate Decline in Surface Water Polluted with Imidacloprid. PLOS One 2013, 8, e62374. DOI: 10.1371/journal.pone.0062374.
  • Anderson, J. C.; Dubetz, C.; Palace, V. P. Neonicotinoids in the Canadian Aquatic Environment: A Literature Review on Current Use Products with a Focus on Fate, Exposure, and Biological Effects. Sci. Total Environ. 2015, 505, 409–422. DOI: 10.1016/j.scitotenv.2014.09.090.
  • Shukla, S.; Jhantani, R. C.; Dahiya, M. S.; Agarwal, R. Oxidative Injury Caused by Individual and Combined Exposure of Neonicotinoid, Organophosphate and Herbicide in Zebrafish. Toxicol. Rep 2017, 4, 240–244. DOI: 10.1016/j.toxrep.2017.05.002.
  • Bortolluzzi, E. C.; Rheinheimer, D. D. S.; Gonçalves, C. S.; Pellegrini, J. B.; Zanella, R.; Copetti, A. C. Contaminação de Águas Superficiais Por Agrotóxicos Em Função Do Uso Do Solo Numa Microbacia Hidrográfica De Agudo. RS. Rev. Bras. Eng. Agríc. Ambient 2006, 10, 881–887. DOI: 10.1590/S1415-43662006000400015.
  • Becker, A. G.; Moraes, B. S.; Menezes, C. C.; Loro, V. L.; Santos, D. R.; Reichert, J. M.; Baldisserotto, B. Pesticide Contamination of Water Alters the Metabolism of Juvenile Silver Catfish, Rhamdia Quelen. Ecotoxicol. Environ. Saf. 2009, 72, 1734–1739. DOI: 10.1016/j.ecoenv.2009.01.006.
  • Amaral, A. M. B.; Gomes, J.; Weimer, G. H.; Marins, A. T.; Loro, V. T.; Zanella, R. Seasonal Implications on Toxicity Biomarkers of Loricaiichthys Anus (Valenciennes, 1835) from a Subtropical Reservoir. Chemosphere 2018, 191, 876–885. DOI: 10.1016/j.chemosphere.2017.10.114.
  • Delbes, G.; Blázquez, M.; Fernandino, J. I.; Grigorova, P.; Hales, B. F.; Metcalfe, C.; Navarro-Martín, L.; Parent, L.; Robaire, B.; Rwigemera, A.; et al. Effects of Endocrine Disrupting Chemicals on Gonad Development: Mechanistic Insights from Fish and Mammals. Environ. Res. B 2022, 204, 112040. DOI: 10.1016/j.envres.2021.112040.
  • Berry, I. I. I.; López-Martínez, R. G. A Dose of Experimental Hormesis: When Mild Stress Protects and Improves Animal Performance. Comp. Biochem. Physiol. Part A 2020, 242, 110658. DOI: 10.1016/j.cbpa.2020.110658.
  • Rix, R. R.; Ayyanath, M. M.; Murali, M.; Cutler, G. C. Sublethal Concentrations of Imidacloprid Increase Reproduction, Alter Expression of Detoxification Genes, and Prime Myzus persicae for Subsequent Stress. J. Pest. Sci. 2016, 89, 581–589. DOI: 10.1007/s10340-015-0716-5.
  • Amaral, D. F.; Montalvão, M. F.; Mendes, B. O.; Castro, A. L. S.; Malafaia, G. Behavioral and Mutagenic Biomarkers in Tadpoles Exposed to Different Abamectin Concentrations. Environ. Sci. Pollut. Res. 2018, 25, 12932–12946. DOI: 10.1007/s11356-018-1562-9.
  • Montalvão, M. F.; Malafaia, G. Effects of Abamectin on Bullfrog Tadpoles: Insights on Cytotoxicity. Environ. Sci. Pollut. Res. 2017, 24, 23411–23416. DOI: 10.1007/s11356-017-0124-x.
  • Weldemariam, T.; Getachew, M. Impact of Pesticides on Birds from DDT to Current Fatality: A Literature Review. J. Zool. Stud. 2016, 3, 45–56.
  • Mossa, A. T. H.; Rasoul, M. A. A.; Mohafrash, S. M. M. Lactational Exposure to Abamectin Induced Mortality and Adverse Biochemical and Histopathological Effects in Suckling Pups. Environ. Sci. Pollut. Res. 2017, 24, 10150–10165. DOI: 10.1007/s11356-017-8600-x.
  • Hoy, T.; Hosberg, T. E. Nafstad I. The Disposition of Ivermectin in Atlantic Salmon (Salmo Salar). Pharmacol. Toxicol. 1990, 67, 307–312. DOI: 10.1016/j.envpol.2017.12.120.
  • Harvey, B.; Kelley, R. N.; Ashwood-Smith, M. J. Permeability of Intact and Dechorionated Zebra Fish Embryos to Glycerol and Dimethyl Sulfoxide. Cryobiology 1983, 20, 432–439. DOI: 10.1016/0011-2240(83)90033-0.
  • Adams, S. L.; Zhang, T.; Rawson, D. M. The Effect of External Medium Composition on Membrane Water Permeability of Zebrafish (Danio rerio) Embryos. Theriogenology 2005, 64, 1591–1602. DOI: 10.1016/j.theriogenology.2005.03.018.
  • Ogungbemi, A. O.; Teixido, E.; Massei, R.; Scholz, S.; Küster, E. Optimization of the Spontaneous Tail Coiling Test for Fast Assessment of Neurotoxic Effects in the Zebrafish Embryo Using an Automated Workflow in KNIME®. Neurotoxicol. Teratol. 2020, 81, 106918. DOI: 10.1016/j.ntt.2020.106918.
  • Katharios, P.; Pavlidis, M.; Iliopoulou-Georgudaki, J. Accumulation of Ivermectin in the Brain of Sea Bream, Sparus aurata after Intraperitoneal Administration. Environ. Toxicol. Pharmacol. 2004, 17, 9–12. DOI: 10.1016/j.etap.2004.01.003.
  • Raftery, T. D.; Volz, D. C. Abamectin Induces Rapid and Reversible Hypoactivity within Early Zebrafish Embryos. Neurotoxicol. Teratol. 2015, 49, 10–18. DOI: 10.1016/j.ntt.2015.02.006.
  • Zini, L. B.; Gutterres, M. Chemical Contaminants in Brazilian Drinking Water: A Systematic Review. J. Water Health 2021, 19, 351–369. DOI: 10.2166/wh.2021.264.
  • Islam, M. A.; Hossen, M. S.; Sumon, K. A.; Rahman, M. M. Acute Toxicity of Imidacloprid on the Developmental Stages of Common Carp Cyprinus Carpio. Toxicol. Environ. Health. Sci. 2019, 11, 244–251. DOI: 10.1007/s13530-019-0410-8.
  • Costa, C. R.; Olivi, P.; Botta, C. M. R.; Espíndola, E. L. G. A Toxicidade em Ambientes Aquáticos: Discussão E Métodos De Avaliação. Quim. Nova. 2008, 31, 1820–1830. DOI: 10.1590/S0100-40422008000700038.
  • Cox, C.; Surgan, M. Unidentified Inert Ingredients in Pesticides: Implications for Human and Environmental Health. Environ. Health Perspect. 2006, 114, 1803–1806. DOI: 10.1289/ehp.9374.
  • Haq, A.; Chandler, M.; Michniak-Kohn, B. Solubility-Physicochemical-Thermodynamic Theory of Penetration Enhancer Mechanism of Action. Int J Pharm 2020, 575, 118920. DOI: 10.1016/j.ijpharm.2019.118920.
  • Liu, W.; Cong, Z.; Liu, G.; Gao, G.; Zhang, Y.; Wu, S.; Gao, E.; Zhu, M. A self-Calibrating Sensor toward Fluorescence Turn-On Detection of DMSO and Nicosulfuron. Inorg. Chim. Acta 2021, 527, 120592. DOI: 10.1016/j.ica.2021.120592.
  • Jiang, J.; Wu, S.; Liu, X.; Wang, Y.; An, X.; Cai, L.; Zhao, X. Effect of Acetochlor on Transcription of Genes Associated with Oxidative Stress, Apoptosis, Immunotoxicity and Endocrine Disruption in the Early Life Stage of Zebrafish. Environ. Toxicol. Pharmacol. 2015, 40, 516–523. DOI: 10.1016/j.etap.2015.08.005.
  • Mu, X.; Chai, T.; Wang, K.; Zhang, J.; Zhu, L.; Li, X.; Wang, C. Occurrence and Origin of Sensitivity toward Difenoconazole in Zebrafish (Danio rerio) during Different Life Stages. Aquat. Toxicol. 2015, 160, 57–68. DOI: 10.1016/j.aquatox.2015.01.001.
  • Santiago, M. R. Análise Dos Efeitos de Agrotóxicos à Base de Imidaclopride e de Abamectina Sobre Embriões de Zebrafish (Danio rerio)/Magda Regina Santiago. São Paulo. Doctorate Thesis, Faculdade de Medicina da Universidade de São Paulo, 2021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.