Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 58, 2023 - Issue 5
115
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Dissipation kinetics, food safety evaluation and decontamination of chlorantraniliprole in cowpea

, , , , &

References

  • Alexandre, G.; Goufo, P.; Barros, A.; Domínguez‐Perles, R.; Trindade, H. A. S.; Rosa, E.; Ferreira, L.; Rodrigues, M. Cowpea (Vigna unguiculata L. Walp), a Renewed Multipurpose Crop for a More Sustainable Agri-Food System: Nutritional Advantages and Constraints. J. Sci. Food Agric. 2016, 96, 2941–2951. DOI: https://doi.org/10.1002/jsfa.7644.
  • Narayan, P.; Kumar, S. Constraints of Growth in Area Production and Productivity of Pulses in India: An Analytical Approach to Major Pulses. Ind. J. Agri. Res. 2015, 49, 114. DOI: 10.5958/0976-058X.2015.00017.7.
  • Agunbiade, T. A.; Coates, B. S.; Kim, K. S.; Forgacs, D.; Margam, V. M.; Murdock, L. L.; Ba, M. N.; Binso-Dabire, C. L.; Baoua, I.; Ishiyaku, M. F.; et al. The Spatial Genetic Differentiation of the Legume Pod Borer, Maruca vitrata F. (Lepidoptera: Crambidae) Populations in West Africa. Bull. Entomol. Res. 2012, 102, 589–599. DOI: 10.1017/S0007485312000156.
  • Muhammad, A.; Malgwi, A. M.; Nahunnaro, H.; Adamu, R. S.; Tamò, M.; Dannon, E.; Datinon, B. Effect of Sowing Dates, Intra-Row Spacings and Pesticides on Cowpea Pod Borer, Maruca vitrata (Fab.) [Lepidoptera: Crambidae] Populations on Cowpea, Vigna unguiculata L. (Walp) in Katsina, Sudan Savannah. Int. J. Trop. Insect Sci. 2022, 42, 581–589. DOI: 10.1007/s42690-021-00576-7.
  • Divekar, P.; Kumar, P.; Suby, S. B. Ovipositional Preference of Gravid Chilo partellus (Swinhoe) Females on Maize Germplasm. J. Ent. Zool. Stud. 2019, 7, 1115–1119.
  • Divekar, P. A.; Narayana, S.; Divekar, B. A.; Kumar, R.; Gadratagi, B. G.; Ray, A.; Singh, A. K.; Rani, V.; Singh, V.; Singh, A. K.; et al. Plant Secondary Metabolites as Defense Tools against Herbivores for Sustainable Crop Protection. IJMS 2022, 23, 2690. DOI: 10.3390/ijms23052690.
  • Divekar, P. A.; Rani, V.; Majumder, S. Protease Inhibitors: An Induced Plant Defense Mechanism against Herbivores. J. Plant Growth Regul. 2022, 1–17. DOI: 10.1007/s00344-022-10767-2.
  • Yadav, N. K.; Singh, P. S. Bio-Efficacy of Chemical Insecticides against Spotted Pod Borer, Maruca testulalis (Geyer) on Cowpea. Int. J. Agric. Environ. Biotech. 2014, 7, 187–190. DOI: 10.5958/j.2230-732X.7.1.025.
  • Sreekanth, M.; Lakshmi, M. S. M.; Rao, Y. K. Efficacy and Economics of Certain New Generation Novel Insecticides against Legume Pod Borer, Maruca vitrata (Geyer) on Pigeonpea (Cajanus cajan L.). J. App. Bio. Biotech. 2015, 3, 7–10. DOI: 10.7324/jabb.2015.3302.
  • Grigolli, J. F. J.; Lourenção, A. L. F.; Ávila, C. J. Field Efficacy of Chemical Pesticides against Maruca vitrata Fabricius (Lepidoptera: Crambidae) Infesting Soybean in Brazil. AJPS 2015, 06, 537–544. DOI: 10.4236/ajps.2015.64058.
  • Mahalle, R. M.; Taggar, G. K. Insecticides against Maruca vitrata (Fabricius) (Lepidoptera: Crambidae) on Pigeonpea. Pestic. Res. J. 2018, 30, 235–240. DOI: 10.5958/2249-524X.2018.00037.7.
  • USEPA. Pesticide fact sheet, chlorantraniliprole. United States environment protection agency, office of prevention, pesticides and toxic substances. 2008. http://www.epa.gov/opprd001/factsheets/chlorantraniliprole.pdf (accessed July 1, 2021).
  • Jiries, A. G.; Al, Nasir, F. M.; Beese, F. Pesticide and Heavy Metals Residue in Wastewater, Soil and Plants in Wastewater Disposal Site near Al-Lajoun Valley, Karak/Jordan. Water Air Soil Pollut. 2002, 133, 97–107. DOI: 10.1023/A:1012923832506.
  • Yu, Y; Zhou, Q. X. Adsorption Characteristics of Pesticides Methamidophos and Glyphosate by Two Soils. Chemo 2005, 58, 811–816. DOI: 10.1016/j.chemosphere.2004.08.064.
  • Li, J. Z.; Wu, X.; Hu, J. Y. Determination of Fungicide Kresoxim-Methyl Residues in Cucumber and Soil by Capillary Gas Chromatography with Nitrogen-Phosphorus Detection. J. Environ. Sci. Health B 2006, 41, 427–436. DOI: 10.1080/03601230600616841.
  • Majumder, S.; Mandal, S.; Majumder, B.; Paul, A.; Paul, T.; Sahana, N.; Mondal, P. A Liquid Chromatographic Method for Determination of Acetamiprid and Buprofezin Residues and Their Dissipation Kinetics in Paddy Matrices and Soil. Environ. Sci. Pollut. Res. Int. 2022, 29, 1401–1412. DOI: 10.1007/s11356-021-15784-4.
  • Majumder, S.; Verma, C. K.; Rani, V.; Rani, A. T.; Pandey, K. K.; Singh, J. Residue Dynamics and Food Safety Evaluation of Fungicide Kresoxim-Methyl in Green Chilli (Capsicum annum L.). Int. J. Environ. Anal. Chem. 2022, 102, 7433–7443. DOI: 10.1080/03067319.2020.1830986.
  • Paul, A.; Khan, Z.; Bhattacharyya, A.; Majumder, S.; Banerjee, K. Multiclass Pesticide Residue Analysis in Tobacco (Nicotiana tabacum) Using High Performance Liquid Chromatography-High Resolution (Orbitrap) Mass Spectrometry: A Simultaneous Screening and Quantitative Method. J. Chromatogr. A 2021, 1648, 462208. doi.: DOI: 10.1016/j.chroma.2021.462208.
  • Majumder, S.; Singh, S.; Divekar, P. A.; Pandey, K. K.; Behera, T. K. Residue Dissipation Kinetics, Safety Evaluation and Decontamination of Hexaconazole in Green Chilli. Int. J. Environ. Anal. Chem. 2022, 1–13. DOI: 10.1080/03067319.2022.2078201.
  • Hoskins, W. M. Mathematical Treatment of the Rate of Loss of Pesticide Residues. FAO Plant Prot. Bull. 1961, 9, 163–168.
  • NSS National Sample Survey Office. 2012. Report No. 558 68/1.0/2 (accessed August 12, 2021).
  • European Communities. Technical Guidance Document on Risk Assessment in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for Existing Substances, and Directive 98/8/EC of the European Parliament and of the Council Concerning the Placing of Biocidal Products on the Market. Part II: Environmental Risk Assessment. 2003. https://echa.europa.eu/documents/10162/16960216/tgdpart2_2ed_en.pdf (accessed April 2018).
  • PPDB, Pesticide Properties Data Base. Agriculture and Environment Research Unit (AERU), University of Hertfordshire. 2017. https://sitem.herts.ac.uk/aeru/ppdb/en/ (accessed August 2017).
  • Ccanccapa, A.; Masia, A.; Navarro-Ortega, A.; Yolanda Pico, Y.; Barcelo, D. Pesticides in the Ebro River Basin: Occurrence and Risk Assessment. Environ. Pollut. 2016, 211, 414–424. DOI: 10.1016/j.envpol.2015.12.059.
  • Biswas, S.; Mondal, R.; Mukherjee, A.; Sarkar, M.; Kumar, K. R. Simultaneous Determination and Risk Assessment of Fipronil and Its Metabolites in Sugarcane, Using GC-ECD and Confirmation by GC-MS/MS. Food Chem. 2019, 272, 559–567. DOI: 10.1016/j.foodchem.2018.08.087.
  • Fadwa, A. T.; Yang, C.; Jack, C. Reduction of Pesticide Residues in Tomatoes and Other Product. J. Food Prot. 2013, 76, 510–510. DOI: 10.4315/0362-028x.jfp-12-240.
  • Guidance SANTE 11312/2021 – Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=727.
  • EURACHEM. Eurachem guides-a focus for analytical chemistry in Europe. 2021. https://www.eurachem.org/index.php/publications/guides#:∼:text=Eurachem%20guides%20are%20developed%20by,charge%20from%20the%20Eurachem%20Website (accessed August 28, 2021).
  • Hingmire, S.; Oulkar, D. P.; Utture, S. C.; Shabeer, A. T. P.; Banerjee, K. Residue Analysis of Fipronil and Difenoconazole in Okra by Liquid Chromatography Tandem Mass Spectrometry and Their Food Safety Evaluation. Food Chem. 2015, 176, 145–151. DOI: 10.1016/j.foodchem.2014.12.049.
  • Malhat, F.; Abdallah, H.; Hegazy, I. Dissipation of Chlorantraniliprole in Tomato Fruits and Soil. Bull. Environ. Contam. Toxicol. 2012, 88, 349–351. DOI: 10.1007/s00128-011-0465-y.
  • Radwan, M. A.; Abu-Elamayem, M. M.; Shiboob, M. H.; Abdel-Aal, A. Residual Behaviour of Profenofos on Some Field-Grown Vegetables and Its Removal Using Various Washing Solutions and Household Processing. Food Chem. Toxicol. 2005, 43, 553–557. https://www.kau.edu.sa/Files/155/Researches/59723_31662.pdf. DOI: 10.1016/j.fct.2004.12.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.