Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 59, 2024 - Issue 6
69
Views
0
CrossRef citations to date
0
Altmetric
Articles

Biological effects of a copper-based fungicide on the fruit fly, Drosophila melanogaster

, , , &
Pages 341-349 | Received 16 Jan 2024, Accepted 11 Apr 2024, Published online: 06 May 2024

References

  • Cavaliere, F.; Brandmayr, P.; Giglio, A. DNA Damage in Haemocytes of Harpalus (Pseudophonus) Rufipes (De Geer, 1774) (Coleoptera, Carabidae) as an Indicator of Sublethal Effects of Exposure to Herbicides. Ecol. Indic. 2019, 98, 88–91. DOI: 10.1016/j.ecolind.2018.10.055.
  • Prosser, R. S.; Anderson, J. C.; Hanson, M. L.; Solomon, K. R.; Sibley, P. K. Indirect Effects of Herbicides on Biota in Terrestrial Edge-of-Field Habitats: A Critical Review of the Literature. Agric. Ecosyst. Environ. 2016, 232, 59–72. DOI: 10.1016/j.agee.2016.07.009.
  • Zubrod, J. P.; Bundschuh, M.; Arts, G.; Brühl, C. A.; Imfeld, G.; Knäbel, A.; Payraudeau, S.; Rasmussen, J. J.; Rohr, J.; Scharmüller, A.; et al. Fungicides: An Overlooked Pesticide Class? Environ. Sci. Technol. 2019, 53, 3347–3365. DOI: 10.1021/acs.est.8b04392.
  • Belsky, J.; Joshi, N. K. Effects of Fungicide and Herbicide Chemical Exposure on Apis and Non-Apis Bees in Agricultural Landscape. Front. Environ. Sci. 2020, 8, 1–10. DOI: 10.3389/fenvs.2020.00081.
  • Margus, A.; Saifullah, S.; Kankare, M.; Lindström, L. Fungicides Modify Pest Insect Fitness Depending on Their Genotype and Population. Sci. Rep. 2023, 13, 17879. DOI: 10.1038/s41598-023-44838-5.
  • Naccarato, A.; Tassone, A.; Cavaliere, F.; Elliani, R.; Pirrone, N.; Sprovieri, F.; Tagarelli, A.; Giglio, A. Agrochemical Treatments as a Source of Heavy Metals and Rare Earth Elements in Agricultural Soils and Bioaccumulation in Ground Beetles. Sci. Total Environ. 2020, 749, 141438. DOI: 10.1016/j.scitotenv.2020.141438.
  • Wolz, M.; Schrader, A.; Müller, C. Direct and Delayed Effects of Exposure to a Sublethal Concentration of the Insecticide λ-Cyhalothrin on Food Consumption and Reproduction of a Leaf Beetle. Sci. Total Environ. 2021, 760, 143381. DOI: 10.1016/j.scitotenv.2020.143381.
  • Bai, Y. C.; Chang, Y. Y.; Hussain, M.; Lu, B.; Zhang, J. P.; Song, X. B.; Lei, X. S.; Pei, D. Soil Chemical and Microbiological Properties Are Changed by Long-Term Chemical Fertilizers That Limit Ecosystem Functioning. Microorganisms 2020, 8, 694. DOI: 10.3390/microorganisms8050694.
  • Bhadauria, S.; Rajput, R. S.; Pandey, S. Status of Water Pollution in Relation to Industrialization in Rajasthan. Rev. Environ. Health 2017, 32, 245–252.
  • Cancellier, E. L.; Silva, D. R. G.; Faquin, V.; Gonçalves, B. D. A.; Cancellier, L. L.; Spehar, C. R. Volatilização De Amônia Por Ureia De Eficiência Aumentada No Milho Cultivado Em Solo De Fertilidade Construída. Ciênc. agrotec. 2016, 40, 133–144. DOI: 10.1590/1413-70542016402031115.
  • Hurtado, J.; Velázquez, E.; Lassaletta, L.; Guardia, G.; Aguilera, E.; Sanz-Cobena, A. Drivers of Ammonia Volatilization in Mediterranean Climate Cropping Systems. Environ. Pollut. 2024, 341, 122814. DOI: 10.1016/j.envpol.2023.122814.
  • Bodelier, P. L. E. Interactions between Nitrogenous Fertilizers and Methane Cycling in Wetland and Upland Soils. Curr. Opin. Environ. Sustain. 2011, 3, 379–388. DOI: 10.1016/j.cosust.2011.06.002.
  • Al-Kaisi, M. M.; Kruse, M. L.; Sawyer, J. E. Effect of Nitrogen Fertilizer Application on Growing Season Soil Carbon Dioxide Emission in a Corn-Soybean Rotation. J. Environ. Qual. 2008, 37, 325–332. DOI: 10.2134/jeq2007.0240.
  • Schoffer, J. T.; Solari, F.; Petit-dit-Grézériat, L.; Pelosi, C.; Ginocchio, R.; Yáñez, C.; Mazuela, P.; Neaman, A. The Downside of Copper Pesticides: An Earthworm’s Perspective. Environ. Sci. Pollut. Res. Int. 2024, 31, 16076–16084. DOI: 10.1007/s11356-024-32078-7.
  • Han, X.; Geller, B.; Moniz, K.; Das, P.; Chippindale, A. K.; Walker, V. K. Monitoring the Developmental Impact of Copper and Silver Nanoparticle Exposure in Drosophila and Their Microbiomes. Sci. Total Environ. 2014, 487, 822–829. DOI: 10.1016/j.scitotenv.2013.12.129.
  • Jan, A. T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q. M. R. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. DOI: 10.3390/ijms161226183.
  • Safiur Rahman, M.; Khan, M. D. H.; Jolly, Y. N.; Kabir, J.; Akter, S.; Salam, A. Assessing Risk to Human Health for Heavy Metal Contamination through Street Dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Sci. Total Environ. 2019, 660, 1610–1622. DOI: 10.1016/j.scitotenv.2018.12.425.
  • Burandt, Q. C.; Deising, H. B.; Tiedemann, A. v. Further Limitations of Synthetic Fungicide Use and Expansion of Organic Agriculture in Europe Will Increase the Environmental and Health Risks of Chemical Crop Protection Caused by Copper-Containing Fungicides. Environ. Toxicol. Chem. 2024, 43, 19–30. DOI: 10.1002/etc.5766.
  • Alengebawy, A.; Abdelkhalek, S. T.; Qureshi, S. R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. DOI: 10.3390/toxics9030042.
  • Naccarato, A.; Vommaro, M. L.; Amico, D.; Sprovieri, F.; Pirrone, N.; Tagarelli, A.; Giglio, A. Triazine Herbicide and NPK Fertilizer Exposure: Accumulation of Heavy Metals and Rare Earth Elements, Effects on Cuticle Melanization, and Immunocompetence in the Model Species Tenebrio Molitor. Toxics 2023, 11, 499. DOI: 10.3390/toxics11060499.
  • Mahanty, T.; Bhattacharjee, S.; Goswami, M.; Bhattacharyya, P.; Das, B.; Ghosh, A.; Tribedi, P. Biofertilizers : A Potential Approach for Sustainable Agriculture Development. Environ. Sci. Pollut. Res. Int. 2017, 24, 3315–3335. DOI: 10.1007/s11356-016-8104-0.
  • Lenart, A.; Wolny-Koładka, K. The Effect of Heavy Metal Concentration and Soil pH on the Abundance of Selected Microbial Groups Within ArcelorMittal Poland Steelworks in Cracow. Bull. Environ. Contam. Toxicol. 2013, 90, 85–90. DOI: 10.1007/s00128-012-0869-3.
  • Dhankhar, N.; Kumar, J. Impact of Increasing Pesticides and Fertilizers on Human Health: A Review. Mater. Today Proc. 2023.
  • Singh, A.; Raj, A.; Padmanabhan, A.; Shah, P.; Agrawal, N. Combating Silver Nanoparticle-Mediated Toxicity in Drosophila melanogaster with Curcumin. J. Appl. Toxicol. 2020, 41, 1188–1199. DOI: 10.1002/jat.4103.
  • Turna Demir, F.; Demir, E. Exposure to Boron Trioxide Nanoparticles and Ions Cause Oxidative Stress, DNA Damage, and Phenotypic Alterations in Drosophila melanogaster as an in Vivo Model. J. Appl. Toxicol. 2022, 42, 1854–1867. DOI: 10.1002/jat.4363.
  • Demir, E. Mechanisms and Biological Impacts of Graphene and Multi-Walled Carbon Nanotubes on Drosophila melanogaster: Oxidative Stress, Genotoxic Damage, Phenotypic Variations, Locomotor Behavior, Parasitoid Resistance, and Cellular Immune Response. J. Appl. Toxicol. 2022, 42, 450–474. DOI: 10.1002/jat.4232.
  • Adedara, I. A.; Klimaczewski, C. V.; Barbosa, N. B. V.; Farombi, E. O.; Souza, D. O.; Rocha, J. B. T. Influence of Diphenyl Diselenide on Chlorpyrifos-Induced Toxicity in Drosophila melanogaster. J. Trace Elem. Med. Biol. 2015, 32, 52–59. DOI: 10.1016/j.jtemb.2015.05.003.
  • Zamberlan, D. C.; Halmenschelager, P. T.; Silva, L. F. O.; Rocha, J. d. Copper Decreases Associative Learning and Memory in Drosophila melanogaster. Sci. Total Environ. 2020, 710, 135306. DOI: 10.1016/j.scitotenv.2019.135306.
  • Rieder, G. S.; Zamberlan, D. C.; Silva, L. F. O.; Borin, B. C.; Schuch, A. P.; Rocha, J. d. Toxicological and Behavioral Analyses Indicates the Safety of a Biofertilizer in the Non-Target D. melanogaster. Sci. Total Environ. 2023, 873, 162150. DOI: 10.1016/j.scitotenv.2023.162150.
  • Linford, N. J.; Bilgir, C.; Ro, J.; Pletcher, S. D. Measurement of Lifespan in Drosophila melanogaster. J. Vis. Exp. 2013, 71, 1–9. DOI: 10.3791/50068.
  • Tully, T.; Quinn, W. G. Classical Conditioning and Retention in Normal and Mutant Drosophila melanogaster. J. Comp. Physiol. A 1985, 157, 263–277. DOI: 10.1007/BF01350033.
  • Yamaguchi, M.; Yoshida, H. As a Model Organism. Adv. Exp. Med. Biol. 2018, 1076, 1–10.
  • Reaume, C. J.; Sokolowski, M. B. The Nature of Drosophila melanogaster. Curr. Biol. 2006, 16, 623–628.
  • Demir, E.; Turna Demir, F. Drosophila melanogaster as a Dynamic in Vivo Model Organism Reveals the Hidden Effects of Interactions between Microplastic/Nanoplastic and Heavy Metals. J. Appl. Toxicol. 2022, 43, 212–219.
  • Zamberlan, D. C.; Halmenschelager, P. T.; Silva, L. F. O. Measured data of Drosophila melanogaster (Diptera Drosophilidae) development and learning and memory behaviour after copper exposition. 2020, 28.
  • Halmenschelager, P. T.; Rocha, J. d. Biochemical CuSO4 Toxicity in Drosophila melanogaster Depends on Sex and Developmental Stage of Exposure. Biol. Trace Elem. Res. 2019, 189, 574–585. DOI: 10.1007/s12011-018-1475-y.
  • Chen, P.; DeWitt, M.; Bornhost, R.; Soares, J.; Félix, A.; Mukhopadhyay, S.; Bowman, A. B.; Aschner, M. Age- and Manganese-Dependent Modulation of Dopaminergic Phenotypes in a C. elegans DJ-1 Genetic Model of Parkinson’s Disease. Metallomics 2016, 7, 289–298. DOI: 10.1039/c4mt00292j.
  • Meyer, D.; Williams, P. L. Critical Reviews Toxicity Testing of Neurotoxic Pesticides in Caenorhabditis elegans. J. Toxicol. Environ. Heal., B 2014, 5, 37–41.
  • Peres, T. V.; Eyng, H.; Lopes, S. C.; Colle, D.; Venske, K. R.; Lopes, M. W.; Ben, J.; Bornhorst, J.; Schwerdtle, T.; Aschner, M.; et al. Developmental Exposure to Manganese Induces Lasting Motor and Cognitive Impairment in Rats. Neurotoxicology 2015, 50, 28–37. DOI: 10.1016/j.neuro.2015.07.005.
  • Tiwari, A. K.; Pragya, P.; Ram, K. R.; Chowdhuri, D. K. Environmental Chemical Mediated Male Reproductive Toxicity : Drosophila melanogaster as an Alternate Animal Model. Theriogenology 2011, 76, 197–216. DOI: 10.1016/j.theriogenology.2010.12.027.
  • Eskici, G.; Axelsen, P. H. Copper and Oxidative Stress in the Pathogenesis of Alzheimer’s Disease. Biochemistry 2012, 51, 6289–6311. DOI: 10.1021/bi3006169.
  • Bhattacharjee, A.; Chakraborty, K.; Shukla, A. Cellular Copper Homeostasis : current Concepts on Its Interplay with Glutathione Homeostasis and Its Implication in Physiology and Human Diseases. Metallomics 2017, 9, 1376–1388. DOI: 10.1039/c7mt00066a.
  • Kalita, J.; Kumar, V.; Misra, U. K.; Bora, H. K. Memory and Learning Dysfunction Following Copper Toxicity : Biochemical and Immunohistochemical Basis. Mol. Neurobiol. 2018, 55, 3800–3811. DOI: 10.1007/s12035-017-0619-y.
  • Gunstone, T.; Cornelisse, T.; Klein, K.; Dubey, A.; Donley, N. Pesticides and Soil Invertebrates: A Hazard Assessment. Front. Environ. Sci. 2021, 9, 1–21. DOI: 10.3389/fenvs.2021.643847.
  • Bart, S.; Laurent, C.; Péry, A. R. R.; Mougin, C.; Pelosi, C. Differences in Sensitivity between Earthworms and Enchytraeids Exposed to Two Commercial Fungicides. Ecotoxicol. Environ. Saf. 2017, 140, 177–184. DOI: 10.1016/j.ecoenv.2017.02.052.
  • Al-Assiuty, A. N. I. M.; Khalil, M. A.; Ismail, A. W. A.; Straalen, N. M.; Van; Ageba, M. F. Effects of Fungicides and Biofungicides on Population Density and Community Structure of Soil Oribatid Mites. Sci. Total Environ. 2014, 466-467, 412–420. DOI: 10.1016/j.scitotenv.2013.07.063.
  • Rieder, G. S.; Duarte, T.; Delgado, C. P.; Rodighiero, A.; Nogara, P. A.; Orian, L.; Aschner, M.; Corte, C. L. D.; Rocha, J. D. Interplay between Diphenyl Diselenide and Copper: Impact on D. melanogaster Survival, Behavior, and Biochemical Parameters. Comp. Biochem. Physiol. C 2024, 281, 109403.
  • Calap-Quintana, P.; González-Fernández, J.; Sebastiá-Ortega, N.; Llorens, J. V.; Moltó, M. D. Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity. Int. J. Mol. Sci 2017, 18,1-29.
  • Navarro, J. A.; Schneuwly, S. Copper and Zinc Homeostasis: Lessons from Drosophila melanogaster. Front. Genet. 2017, 8, 223. DOI: 10.3389/fgene.2017.00223.
  • Turna Demir, F.; Demir, E. Genotoxicity Mechanism of Food Preservative Propionic Acid in the in Vivo Drosophila Model: Gut Damage, Oxidative Stress, Cellular Immune Response and DNA Damage. Toxicol. Mech. Methods. 2022, 33, 327–336. DOI: 10.1080/15376516.2022.2137871.
  • Poulson, D. F.; Bowen, T.; Hilse, M.; Rubinson, A. C. The Copper Metabolism of Drosophila. Proc. Natl. Acad. Sci. U S A 1952, 38, 912–921. DOI: 10.1073/pnas.38.10.912.
  • Southon, A.; Burke, R.; Camakaris, J. What Can Flies Tell Us about Copper Homeostasis? Metallomics 2013, 5, 1346–1356. DOI: 10.1039/c3mt00105a.
  • Klimaczewski, C. V.; Ecker, A.; Piccoli, B.; Aschner, M.; Barbosa, N. V.; Rocha, J. B. T. Peumus Boldus Attenuates Copper-Induced Toxicity in Drosophila melanogaster. Biomed. Pharmacother. 2018, 97, 1–8. DOI: 10.1016/j.biopha.2017.09.130.
  • Moulin, T. C.; Ferro, F.; Hoyer, A.; Cheung, P.; Williams, M. J.; Schiöth, H. B. The Drosophila melanogaster Levodopa-Induced Depression Model Exhibits Negative Geotaxis Deficits and Differential Gene Expression in Males and Females. Front. Neurosci. 2021, 15, 653470. DOI: 10.3389/fnins.2021.653470.
  • Gao, F.; Yuan, Z.; Zhang, L.; Peng, Y.; Qian, K.; Zheng, M. Toxic Effects of Copper Fungicides on the Development and Behavior of Zebrafish in Early-Life Stages. Nanomaterials (Basel) 2023, 13, 1–11. DOI: 10.3390/nano13192629.
  • Lynch-Day, M. A.; Mao, K.; Wang, K.; Zhao, M.; Klionsky, D. J.; Cookson, M. R.; Venderova, K.; Park, D. S.; Coune, P. G.; Schneider, B. L.; et al. The Role of Autophagy in Parkinson’s Disease. Cold Spring Harb Perspect Med. 2014, 1–14.
  • Rembach, A.; Hare, D. J.; Lind, M.; Fowler, C. J.; Cherny, R. A.; McLean, C.; Bush, A. I.; Masters, C. L.; Roberts, B. R. Decreased Copper in Alzheimer’s Disease Brain is Predominantly in the Soluble Extractable Fraction. Int. J. Alzheimers. Dis. 2013, 2013, 623241–623247. DOI: 10.1155/2013/623241.
  • Squitti, R.; Hoogenraad, T.; Brewer, G.; Bush, A. I.; Polimanti, R. Copper Status in Alzheimer ‘ s Disease and Other Neurodegenerative Disorders. Int. J. Alzheimers. Dis. 2013, 2013, 838274.
  • Albarracin, S. L.; Stab, B.; Casas, Z.; Sutachan, J. J.; Samudio, I.; Gonzalez, J.; Gonzalo, L.; Capani, F.; Morales, L.; Barreto, G. E. Effects of Natural Antioxidants in Neurodegenerative Disease. Nutr. Neurosci. 2012, 15, 1–9. DOI: 10.1179/1476830511Y.0000000028.
  • Schreurs, B. G.; Smith-Bell, C. A.; Lemieux, S. K. Dietary Cholesterol Increases Ventricular Volume and Narrows Cerebrovascular Diameter in a Rabbit Model of Alzheimer’s Disease. Neuroscience 2013, 254, 61–69. DOI: 10.1016/j.neuroscience.2013.09.015.
  • Opazo, C. M.; Greenough, M. A.; Bush, A. I. Copper : From Neurotransmission to Neuroproteostasis. Front. Aging Neurosci. 2014, 6, 143. DOI: 10.3389/fnagi.2014.00143.
  • Sellami, A.; Wegener, C.; Veenstra, J. A. Functional Significance of the Copper Transporter ATP7 in Peptidergic Neurons and Endocrine Cells in Drosophila melanogaster. FEBS Lett. 2012, 586, 3633–3638. DOI: 10.1016/j.febslet.2012.08.009.
  • Nimgampalle, M.; Chakravarthy, H.; Sharma, S.; Shree, S.; Ramachandra, A.; Adi, J.; Devanathan, V. Neurotransmitter Systems in the Etiology of Major Neurological Disorders : Emerging Insights and Therapeutic Implications. Ageing Res. Rev. 2023, 89, 101994. DOI: 10.1016/j.arr.2023.101994.
  • Abolaji, A. O.; Fasae, K. D.; Iwezor, C. E.; Aschner, M.; Farombi, E. O. Curcumin Attenuates Copper-Induced Oxidative Stress and Neurotoxicity in Drosophila melanogaster. Toxicol. Rep. 2020, 7, 261–268. DOI: 10.1016/j.toxrep.2020.01.015.
  • Zhang, S.; Yin, Y.; Lu, H.; Guo, A. Increased Dopaminergic Signaling Impairs Aversive Olfactory Memory Retention in Drosophila. Biochem. Biophys. Res. Commun. 2008, 370, 82–86. DOI: 10.1016/j.bbrc.2008.03.015.
  • Drozak, J.; Bryła, J. Dopamina—Nie Tylko Neuroprzekaźnik. Postepy Hig. Med. Dosw. (Online) 2005, 59, 405–420.
  • Palop, J. J.; Mucke, L. Amyloid-B-Induced Neuronal Dysfunction in Alzheimer’s Disease: From Synapses toward Neural Networks. Nat. Neurosci. 2010, 13, 812–818. DOI: 10.1038/nn.2583.
  • Paris, I.; Dagnino-Subiabre, A.; Marcelain, K.; Bennett, L. B.; Caviedes, P.; Caviedes, R.; Azar, C. O.; Segura-Aguilar, J.* Copper Neurotoxicity is Dependent on Dopamine-Mediated Copper Uptake and One-Electron Reduction of Aminochrome in a Rat Substantia Nigra Neuronal Cell Line. J. Neurochem. 2001, 77, 519–529. DOI: 10.1046/j.1471-4159.2001.00243.x.
  • Speranza, L.; Porzio, U. D.; Viggiano, D.; Donato, A. d.; Volpicelli, F. Dopamine: The Neuromodulator of Long-Term Synaptic Plasticity, Reward and Movement Control. Cells 2021, 10, 735. DOI: 10.3390/cells10040735.
  • Bracis, C.; Gurarie, E.; Moorter, B.; Van; Goodwin, R. A. Memory Effects on Movement Behavior in Animal Foraging. PLoS ONE. 2015, 10, e0136057. DOI: 10.1371/journal.pone.0136057.
  • Boyer, D.; Crofoot, M. C.; Walsh, P. D. Non-Random Walks in Monkeys and Humans. J. R Soc. Interface 2012, 9, 842–847. DOI: 10.1098/rsif.2011.0582.
  • Menzel, R.; Greggers, U.; Smith, A.; Berger, S.; Brandt, R.; Brunke, S.; Bundrock, G.; Hülse, S.; Plümpe, T.; Schaupp, F.; et al. Honey Bees Navigate according to a Map-like Spatial Memory. Proc. Natl. Acad. Sci. USA 2005, 102, 3040–3045. DOI: 10.1073/pnas.0408550102.
  • Ranc, N.; Moorcroft, P. R.; Ossi, F.; Cagnacci, F. Experimental Evidence of Memory-Based Foraging Decisions in a Large Wild Mammal. Proc. Natl. Acad. Sci. USA 2021, 1–9.
  • Kenna, D.; Cooley, H.; Pretelli, I.; Ramos Rodrigues, A.; Gill, S. D.; Gill, R. J. Pesticide Exposure Affects Flight Dynamics and Reduces Flight Endurance in Bumblebees. Ecol. Evol. 2019, 9, 5637–5650. DOI: 10.1002/ece3.5143.
  • Stanley, D. A.; Russell, A. L.; Morrison, S. J.; Rogers, C.; Raine, N. E. Investigating the Impacts of Field-Realistic Exposure to a Neonicotinoid Pesticide on Bumblebee Foraging, Homing Ability and Colony Growth. J. Appl. Ecol. 2016, 53, 1440–1449. DOI: 10.1111/1365-2664.12689.
  • Williamson, S. M.; Wright, G. A. Exposure to Multiple Cholinergic Pesticides Impairs Olfactory Learning and Memory in Honeybees. J. Exp. Biol. 2013, 216, 1799–1807. DOI: 10.1242/jeb.083931.
  • Park, M. G.; Blitzer, E. J.; Gibbs, J.; Losey, J. E.; Danforth, B. N. Negative Effects of Pesticides on Wild Bee Communities Can Be Buffered by Landscape Context. Proc. R. Soc. B Biol. Sci. 2015, 282,
  • Schuhmann, A.; Schmid, A. P.; Manzer, S.; Schulte, J.; Scheiner, R. Interaction of Insecticides and Fungicides in Bees. Front. Insect Sci. 2022, 1, 1–14. DOI: 10.3389/finsc.2021.808335.
  • Raine, N. E.; Rundlöf, M. Pesticide Exposure and Effects on Non-Apis Bees. Annu. Rev. Entomol. 2024, 69, 551–576. DOI: 10.1146/annurev-ento-040323-020625.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.