318
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Mechanisms Regulating Human FMO3 Transcription

&
Pages 419-442 | Published online: 09 Oct 2008

REFERENCES

  • Aden D. P., Fogel A., Plotkin S., Damjanov I., Knowles B. B. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature 1979; 282: 615–616
  • Andrews N. C. The NF-E2 transcription factor. Int. J. Biochem. Cell Biol. 1998; 30: 429–432
  • Ayesh R., Mitchell S. C., Smith R. L. Dysfunctional N-oxidation of trimethylamine and the influence of testosterone treatment in man. Pharmacogenetics 1995; 5: 244–246
  • Boucher P. D., Ruch R. J., Hines R. N. Specific nuclear protein binding to a negative regulatory element on the human CYP1A1 gene. J. Biol. Chem. 1993; 268: 17384–17391
  • Cashman J. R. Structural and catalytic properties of the mammalian flavin-containing monooxygenase. Chem. Res. Toxicol. 1995; 8: 165–181
  • Cashman J. R. Human flavin-containing monooxygenase (form 3): Polymorphisms and variations in chemical metabolism. Pharmacogenomics 2002; 3: 325–339
  • Corre S., Galibert M. D. Upstream stimulating factors: highly versatile stress-responsive transcription factors. Pigment Cell Res. 2005; 18: 337–348
  • Dorn A., Bollekens J., Staub A., Benoist C., Mathis D. A multiplicity of CCAAT box-binding proteins. Cell 1987; 50: 863–872
  • Hernandez D., Janmohamed A., Chandan P., Phillips I. R., Shephard E. A. Organization and evolution of the flavin-containing monooxygenase genes of human and mouse: identification of novel gene and pseudogene clusters. Pharmacogenetics 2004; 14: 117–130
  • Hines R. N. Developmental and tissue-specific expression of human flavin-containing monooxygenase 1 and 3. Expet. Opin. Drug. Metabol. Toxicol. 2006; 2: 41–49
  • Hines R. N., Hopp K. A., Franco J., Saeian K., Begun F. P. Alternative processing of the human hepatic FMO6 gene renders transcripts incapable of encoding a functional flavin-containing monooxygenase. Mol. Pharmacol. 2002; 62: 320–325
  • Hisamuddin I. M., Wehbi M. A., Schmotzer B., Easley K. A., Hylind L. M., Giardiello F. M., Yang V. W. Genetic polymorphisms of flavin monooxygenase 3 in sulindac-induced regression of colorectal adenomas in familial adenomatous polyposis. Canc. Epidemiol. Biomarkers Prev. 2005; 14: 2366–2369
  • Janmohamed A., Hernandez D., Phillips I. R., Shephard E. A. Cell-, tissue-, sex- and developmental stage-specific expression of mouse flavin-containing monooxygenases (Fmos). Biochem. Pharmacol. 2004; 68: 73–83
  • Javahery R., Khachi A., Lo K., Zenzie-Gregory B., Smale S. T. DNA sequence requirements for transcriptional initiator activity in mammalian cells. Mol. Cell. Biol. 1994; 14: 116–127
  • Jover R., Bort R., Gómez-Lechón M. J., Castell J. V. Re-expression of C/EBPα induces CYP2B6, CYP2C9, and CYP2D6 genes in HepG2 cells. FEBS Lett. 1998; 431: 227–230
  • Kel A. E., Gossling E., Reuter I., Cheremushkin E., Kel-Margoulis O. V., Wingender E. MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res. 2003; 31: 3576–3579
  • Koukouritaki S. B., Simpson P., Yeung C. K., Rettie A. E., Hines R. N. Human hepatic flavin-containing monooxygenase 1 (FMO1) and 3 (FMO3) developmental expression. Pediatric Res. 2002; 51: 236–243
  • Krueger S. K., Williams D. E. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms, and role in drug metabolism. Pharmacol. Ther. 2005; 106: 357–387
  • Li S., Hunger S. P. The DBP transcriptional activation domain is highly homologous to that of HLF and TEF and is not responsible for the tissue type-specific transcriptional activity of DBP. Gene 2001; 263: 239–245
  • Luo Z., Hines R. N. Identification of multiple flavin-containing monooxygenase form 1 (FMO1) gene promoters and observation of tissue-specific DNaseI hypersensitive sites. Arch. Biochem. Biophys. 1996; 336: 251–260
  • Mantovani R. A survey of 178 NF-Y binding CCAAT boxes. Nucleic Acids Res. 1998; 26: 1135–1143
  • Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y. Gene 1999; 239: 15–27
  • Mantovani R., Li X. Y., Pessara U., Hooft van Huijsduijnen R., Benoist C., Mathis D. Dominant negative analogs of NF-YA. J. Biol. Chem. 1994; 269: 20340–20346
  • Marchenko G. N., Marchenko N. D., Leng J., Strongin A. Y. Promoter characterization of the novel human matrix metalloproteinase-26 gene: regulation by the T-cell factor-4 implies specific expression of the gene in cancer cells of epithelial origin. Biochem. J. 2002; 363: 253–262
  • Matys V., Kel-Margoulis O. V., Fricke E., Liebich I., Land S., Barre-Dirrie A., Reuter I., Chekmenev D., Krull M., Hornischer K., Voss N., Stegmaier P., Lewicki-Potapov B., Saxel H., Kel A. E., Wingender E. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 2006; 34: D108–D110
  • Mendel D. B., Hansen L. P., Graves M. K., Conley P. B., Crabtree G. R. HNF-1 alpha and HNF-1 beta (vHNF-1) share dimerization and homeo domains, but not activation domains, and form heterodimers in vitro. Gene Dev. 1991; 5: 1042–1056
  • Mitchell S. C., Smith R. L. Trimethylaminuria: The fish malodor syndrome. Drug Metab. Dispos. 2001; 29: 517–521
  • Monica K., Galili N., Nourse J., Saltman D., Cleary M. L. PBX2 and PBX3, new homeobox genes with extensive homology to the human proto-oncogene PBX1. Mol. Cell Biol. 1991; 11: 6149–6157
  • Morgan E. T., Ullrich V., Daiber A., Schmidt P., Takaya N., Shoun H., McGiff J. C., Oyekan A., Hanke C. J., Campbell W. B., Park C. S., Kang J. S., Yi H. G., Cha Y. N., Mansuy D., Boucher J. L. Cytochromes P450 and flavin monooxygenases--targets and sources of nitric oxide. Drug Metab Dispos. 2001; 29: 1366–1376
  • Overby L. H., Carver G. C., Philpot R. M. Quantitation and kinetic properties of hepatic microsomal and recombinant flavin-containing monooxygenases 3 and 5 from humans. Chem. Biol. Interact. 1997; 106: 29–45
  • Popperl H., Bienz M., Studer M., Chan S. K., Aparicio S., Brenner S., Mann R. S., Krumlauf R. Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell 1995; 81: 1031–1042
  • Remenyi A., Tomilin A., Scholer H. R., Wilmanns M. Differential activity by DNA-induced quarternary structures of POU transcription factors. Biochem. Pharmacol. 2002; 64: 979–984
  • Selleri L., DiMartino J., van Deursen J., Brendolan A., Sanyal M., Boon E., Capellini T., Smith K. S., Rhee J., Popperl H., Grosveld G., Cleary M. L. The TALE homeodomain protein Pbx2 is not essential for development and long-term survival. Mol. Cell Biol. 2004; 24: 5324–5331
  • Shi Y., Seto E., Chang L., Shenk T. Transcriptional repression by YY1, a human GLI-Kruppel-related protein and relief of repression by adenovirus E1A protein. Cell 1991; 67: 377–388
  • Shimada T., Yamazaki H., Mimura M., Inui Y., Guengerich F. P. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens, and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther. 1994; 270: 414–423
  • Sirito M., Lin Q., Maity T., Sawadogo M. Ubiquitous expression of the 43- and 44-kDa forms of transcription factor USF in mammalian cells. Nucleic Acids Res. 1994; 22: 427–433
  • Stevens J. C., Shipley L. A., Cashman J. R., Vandenbranden M., Wrighton S. A. Comparison of human and rhesus monkey in vitro phase I and phase II hepatic drug metabolism activities. Drug Metab. Dispos. 1993; 21: 753–760
  • Takahashi Y., Hamada J., Murakawa K., Takada M., Tada M., Nogami I., Hayashi N., Nakamori S., Monden M., Miyamoto M., Katoh H., Moriuchi T. Expression profiles of 39 HOX genes in normal human adult organs and anaplastic thyroid cancer cell lines by quantitative real-time RT-PCR system. Exp. Cell Res. 2004; 293: 144–153
  • Thomas M. J., Seto E. Unlocking the mechanisms of transcription factor YY1: Are chromatin modifying enzymes the key?. Gene 1999; 236: 197–208
  • Tijet N., Boutros P. C., Moffat I. D., Okey A. B., Tuomisto J., Pohjanvirta R. Aryl hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-independent gene batteries. Mol. Pharmacol. 2006; 69: 140–153
  • Wilkening S., Stahl F., Bader A. Comparison of primary human hepatocytes and hepatoma cell line HepG2 with regard to their biotransformation properties. Drug Metab Dispos. 2003; 31: 1035–1042
  • Yano M., Falvey E., Gonzalez F. J. Role of the liver-enriched transcription factor DBP in expression of the cytochrome P450 CYP2C6 gene. Mol. Cell. Biol. 1992; 12: 2847–2854
  • Zhang J., Cashman J. R. Quantitative analysis of FMO gene mRNA levels in human tissues. Drug Metab Dispos. 2006; 34: 19–26
  • Ziegler D. M. An overview of the mechanism, substrate specificities, and structure of FMOs. Drug Metab. Rev. 2002; 34: 503–511

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.