1,542
Views
120
CrossRef citations to date
0
Altmetric
Review Article

Clinical pharmacology and pharmacogenetics of gemcitabine

, , &
Pages 77-88 | Accepted 13 Jan 2009, Published online: 01 May 2009

References

  • Abbruzzese JL, Grunewald R, Weeks EA, Gravel D, Adams T, Nowak B, et al. (1991). A phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J Clin Oncol 9:491–498.
  • Achiwa H, Oguri T, Sato S, Maeda H, Niimi T, Ueda R. (2004). Determinants of sensitivity and resistance to gemcitabine: the roles of human equilibrative nucleoside transporter 1 and deoxycytidine kinase in non-small-cell lung cancer. Cancer Sci 95:753–757.
  • Bengala C, Guarneri V, Giovannetti E, Lencioni M, Fontana E, Mey V, et al. (2005). Prolonged fixed dose rate infusion of gemcitabine with autologous haemopoietic support in advanced pancreatic adenocarcinoma. Br J Cancer 93:35–40.
  • Bepler G, Kusmartseva I, Sharma S, Gautam A, Cantor A, Sharma A, et al. (2006). RRM1 modulated in vitro and in vivo efficacy of gemcitabine and platinum in non-small-cell lung cancer. J Clin Oncol 24:4731–4737.
  • Bepler G, Sharma S, Cantor A, Gautam A, Haura E, Simon G, et al. (2004). RRM1 and PTEN as prognostic parameters for overall and disease-free survival in patients with non-small-cell lung cancer. J Clin Oncol 22:1878–1885.
  • Bepler G, Zheng Z, Gautam A, Sharma S, Cantor A, Sharma A, et al. (2005). Ribonucleotide reductase M1 gene promoter activity, polymorphisms, population frequencies, and clinical relevance. Lung Cancer 47:183–192.
  • Bergman AM, Eijk PP, Ruiz van Haperen VW, Smid K, Veerman G, Hubeek I, et al. (2005). In vivo induction of resistance to gemcitabine results in increased expression of ribonucleotide reductase subunit M1 as the major determinant. Cancer Res 65:9510–9516.
  • Bergman AM, Pinedo HM, Jongsma AP, Brouwer M, Ruiz van Haperen VW, Veerman G, et al. (1999). Decreased resistance to gemcitabine (2’,2’-difluorodeoxycitidine) of cytosine arabinoside-resistant myeloblastic murine and rat leukemia cell lines: role of altered activity and substrate specificity of deoxycytidine kinase. Biochem Pharmacol 57:397–406.
  • Bergman AM, Pinedo HM, Peters GJ. (2002). Determinants of resistance to 2’,2’-difluorodeoxycytidine (gemcitabine). Drug Resist Updat 5:19–33.
  • Burke T, Lee S, Ferguson PJ, Hammond JR. (1998). Interaction of 2’,2’-difluorodeoxycytidine (gemcitabine) and formycin B with the Na+-dependent and -independent nucleoside transporters of Ehrlich ascites tumor cells. J Pharmacol Exp Ther 286:1333–1340.
  • Damaraju S, Zhang J, Visser F, Tackaberry T, Dufour J, Smith KM, et al. (2005). Identification and functional characterization of variants in human concentrative nucleoside transporter 3, hCNT3 (SLC28A3), arising from single-nucleotide polymorphisms in coding regions of the hCNT3 gene. Pharmacogenet Genom 15:173–182.
  • Damaraju VL, Damaraju S, Young JD, Baldwin SA, Mackey J, Sawyer MB, et al. (2003). Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene 22:7524–7536.
  • Davidson JD, Ma L, Flagella M, Geeganage S, Gelbert LM, Slapak CA. (2004). An increase in the expression of ribonucleotide reductase large subunit 1 is associated with gemcitabine resistance in non-small-cell lung cancer cell lines. Cancer Res 64:3761–3766.
  • Dumontet C, Fabianowska-Majewska K, Mantincic D, Callet Bauchu E, Tigaud I, Gandhi V, et al. (1999). Common resistance mechanisms to deoxynucleoside analogues in variants of the human erythroleukaemic line K562. Br J Haematol 106:78–85.
  • Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. (2004). RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemcitabine. Oncogene 23:1539–1548.
  • Duxbury MS, Whang EE. (2007). RRM2 induces NF-kappaB-dependent MMP-9 activation and enhances cellular invasiveness. Biochem Biophys Res Commun 354:190–196.
  • Evans WE, McLeod HL. (2003). Pharmacogenomics—drug disposition, drug targets, and side effects. N Engl J Med 348:538–549.
  • Fitzgerald SM, Goyal RK, Osborne WR, Roy JD, Wilson JW, Ferrell RE. (2006). Identification of functional single-nucleotide polymorphism haplotypes in the cytidine deaminase promoter. Hum Genet 119:276–283.
  • Fukunaga AK, Marsh S, Murry DJ, Hurley TD, McLeod HL. (2004). Identification and analysis of single-nucleotide polymorphisms in the gemcitabine pharmacologic pathway. Pharmacogenomics J 4:307–314.
  • Gilbert JA, Salavaggione OE, Ji Y, Pelleymounter LL, Eckloff BW, Wieben ED, et al. (2006). Gemcitabine pharmacogenomics: cytidine deaminase and deoxycytidylate deaminase gene resequencing and functional genomics. Clin Cancer Res 12:1794–1803.
  • Giovannetti E, Del Tacca M, Mey V, Funel N, Nannizzi S, Ricci S, et al. (2006). Transcription analysis of human equilibrative nucleoside transporter-1 predicts survival in pancreas cancer patients treated with gemcitabine. Cancer Res, 66:3928–3935.
  • Goan YG, Zhou B, Hu E, Mi S, Yen Y. (1999). Overexpression of ribonucleotide reductase as a mechanism of resistance to 2’,2’-difluorodeoxycytidine in the human KB cancer cell line. Cancer Res 59:4204–4207.
  • Gray JH, Mangravite LM, Owen RP, Urban TJ, Chan W, Carlson EJ, et al. (2004). Functional and genetic diversity in the concentrative nucleoside transporter, CNT1, in human populations. Mol Pharmacol 65:512–519.
  • Heinemann V, Hertel LW, Grindey GB, Plunkett W. (1988). Comparison of the cellular pharmacokinetics and toxicity of 2’,2’-difluorodeoxycytidine and 1-beta-D-arabinofuranosylcytosine. Cancer Res 48:4024–4031.
  • Heinemann V, Xu YZ, Chubb S, Sen A, Hertel LW, Grindey GB, et al. (1990). Inhibition of ribonucleotide reduction in CCRF-CEM cells by 2’,2’-difluorodeoxycytidine. Mol Pharmacol 38:567–572.
  • Hunsucker SA, Mitchell BS, Spychala J. (2005). The 5’-nucleotidases as regulators of nucleotide and drug metabolism. Pharmacol Ther 107:1–30.
  • Hunsucker SA, Spychala J, Mitchell BS. (2001). Human cytosolic 5’-nucleotidase. I: Characterization and role in nucleoside analog resistance. J Biol Chem 276:10498–10504.
  • Jarjanazi H, Kiefer J, Savas S, Briollais L, Tuzmen S, Pabalan N, et al. (2008). Discovery of genetic profiles impacting response to chemotherapy: application to gemcitabine. Hum Mutat 29:461–467.
  • Joerger M, Bosch TM, Doodeman VD, Beijnen JH, Smits PH, Schellens JH. (2006). Novel deoxycytidine kinase gene polymorphisms: a population screening study in Caucasian healthy volunteers. Eur J Clin Pharmacol 62:681–684.
  • Kim SR, Saito Y, Maekawa K, Sugiyama E, Kaniwa N, Ueno H, et al. (2008). Twenty novel genetic variations and haplotype structures of the DCK gene-encoding human deoxycytidine kinase (dCK). Drug Metab Pharmacokinet 23:379–384.
  • Kim SR, Saito Y, Maekawa K, Sugiyama E, Kaniwa N, Ueno H, et al. (2006). Thirty novel genetic variations in the SLC29A1 gene-encoding human equilibrative nucleoside transporter 1 (hENT1). Drug Metab Pharmacokinet 21:248–256.
  • Kocabas NA, Aksoy P, Pelleymounter LL, Moon I, Ryu JS, Gilbert JA, et al. (2008). Gemcitabine pharmacogenomics: deoxycytidine kinase and cytidylate kinase gene resequencing and functional genomics. Drug Metab Dispos 36:1951–1959.
  • Kroep JR, Giaccone G, Tolis C, Voorn DA, Loves WJ, Groeningen CJ, et al. (2000). Sequence dependent effect of paclitaxel on gemcitabine metabolism in relation to cell cycle and cytotoxicity in non-small-cell lung cancer cell lines. Br J Cancer 83:1069–1076.
  • Kroep JR, Loves WJ, van der Wilt CL, Alvarez E, Talianidis I, Boven E, et al. (2002). Pretreatment deoxycytidine kinase levels predict in vivo gemcitabine sensitivity. Mol Cancer Ther 1:371–376.
  • Kwon WS, Rha SY, Choi YH, Lee JO, Park KH, Jung JJ, et al. (2006). Ribonucleotide reductase M1 (RRM1) 2464G>A polymorphism shows an association with gemcitabine chemosensitivity in cancer cell lines. Pharmacogenet Genom 16:429–438.
  • Lamba JK, Crews K, Pounds S, Schuetz EG, Gresham J, Gandhi V, et al. (2007). Pharmacogenetics of deoxycytidine kinase: identification and characterization of novel genetic variants. J Pharmacol Exp Ther 323:935–945.
  • Leabman MK, Huang CC, DeYoung J, Carlson EJ, Taylor TR, de la Cruz M, et al. (2003). Natural variation in human membrane transporter genes reveals evolutionary and functional constraints. Proc Natl Acad Sci U S A 100:5896–5901.
  • Li L, Fridley B, Kalari K, Jenkins G, Batzler A, Safgren S, et al. (2008). Gemcitabine and cytosine arabinoside cytotoxicity: association with lymphoblastoid cell expression. Cancer Res 68:7050–7058.
  • Mackey JR, Mani RS, Selner M, Mowles D, Young JD, Belt JA, et al. (1998). Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res 58:4349–4357.
  • Mackey JR, Yao SY, Smith KM, Karpinski E, Baldwin SA, Cass CE, et al. (1999). Gemcitabine transport in xenopus oocytes expressing recombinant plasma membrane mammalian nucleoside transporters. J Natl Cancer Inst 91:1876–1881.
  • Matsubayashi H, Sato N, Brune K, Blackford AL, Hruban RH, Canto M, et al. (2005). Age- and disease-related methylation of multiple genes in non-neoplastic duodenum and in duodenal juice. Clin Cancer Res 11:573–583.
  • Mey V, Giovannetti E, De Braud F, Nannizzi S, Curigliano G, Verweij F, et al. (2006). In vitro synergistic cytotoxicity of gemcitabine and pemetrexed and pharmacogenetic evaluation of response to gemcitabine in bladder cancer patients. Br J Cancer 95:289–297.
  • Mini E, Nobili S, Caciagli B, Landini I, Mazzei T. (2006). Cellular pharmacology of gemcitabine. Ann Oncol 17(Suppl 5):v7–v12.
  • Myers SN, Goyal RK, Roy JD, Fairfull LD, Wilson JW, Ferrell RE. (2006). Functional single-nucleotide polymorphism haplotypes in the human equilibrative nucleoside transporter 1. Pharmacogenet Genom 16:315–320.
  • Neff T, Blau CA. (1996). Forced expression of cytidine deaminase confers resistance to cytosine arabinoside and gemcitabine. Exp Hematol 24:1340–1346.
  • Osato DH, Huang CC, Kawamoto M, Johns SJ, Stryke D, Wang J, et al. (2003). Functional characterization in yeast of genetic variants in the human equilibrative nucleoside transporter, ENT1. Pharmacogenetics 13:297–301.
  • Rha SY, Jeung HC, Choi YH, Yang WI, Yoo JH, Kim BS, et al. (2007). An association between RRM1 haplotype and gemcitabine-induced neutropenia in breast cancer patients. Oncologist, 12:622–630.
  • Rosell R, Danenberg KD, Alberola V, Bepler G, Sanchez JJ, Camps C, et al.(2004a). Ribonucleotide reductase messenger RNA expression and survival in gemcitabine/cisplatin-treated advanced non-small-cell lung cancer patients. Clin Cancer Res 10:1318–1325.
  • Rosell R, Felip E, Taron M, Majo J, Mendez P, Sanchez-Ronco M, et al.(2004b). Gene expression as a predictive marker of outcome in stage IIB–IIIA–IIIB non-small-cell lung cancer after induction gemcitabine-based chemotherapy followed by resectional surgery. Clin Cancer Res 10:4215s–4219s.
  • Rosell R, Scagliotti G, Danenberg KD, Lord RV, Bepler G, Novello S, et al. (2003). Transcripts in pretreatment biopsies from a three-arm randomized trial in metastatic non-small-cell lung cancer. Oncogene 22:3548–3553.
  • Ruiz van Haperen VW, Veerman G, Boven E, Noordhuis P, Vermorken JB, Peters GJ. (1994). Schedule dependence of sensitivity to 2’,2’-difluorodeoxycytidine (gemcitabine) in relation to accumulation and retention of its triphosphate in solid tumour cell lines and solid tumours. Biochem Pharmacol 48:1327–1339.
  • Ruiz van Haperen VW, Veerman G, Braakhuis BJ, Vermorken JB, Boven E, Leyva A, et al. (1993). Deoxycytidine kinase and deoxycytidine deaminase activities in human tumour xenografts. Eur J Cancer 29A:2132–2137.
  • Ruiz van Haperen VW, Veerman G, Vermorken JB, Pinedo HM, Peters G. (1996). Regulation of phosphorylation of deoxycytidine and 2’,2’-difluorodeoxycytidine (gemcitabine): effects of cytidine 5’-triphosphate and uridine 5’-triphosphate in relation to chemosensitivity for 2’,2’-difluorodeoxycytidine. Biochem Pharmacol 51:911–918.
  • Schroder JK, Kirch C, Seeber S, Schutte J. (1998). Structural and functional analysis of the cytidine deaminase gene in patients with acute myeloid leukaemia. Br J Haematol 103:1096–1103.
  • Sebastiani V, Ricci F, Rubio-Viqueira B, Kulesza P, Yeo CJ, Hidalgo M, et al. (2006). Immunohistochemical and genetic evaluation of deoxycytidine kinase in pancreatic cancer: relationship to molecular mechanisms of gemcitabine resistance and survival. Clin Cancer Res 12:2492–2497.
  • Seve P, Mackey JR, Isaac S, Tredan O, Souquet PJ, Perol M, et al. (2005). cN-II expression predicts survival in patients receiving gemcitabine for advanced non-small-cell lung cancer. Lung Cancer 49:363–370.
  • Shi JY, Shi ZZ, Zhang SJ, Zhu YM, Gu BW, Li G, et al. (2004). Association between single-nucleotide polymorphisms in deoxycytidine kinase and treatment response among acute myeloid leukaemia patients. Pharmacogenetics 14:759–768.
  • Soo RA, Wang LZ, Ng SS, Chong PY, Yong WP, Lee SC, et al. (2009). Distribution of gemcitabine pathway genotypes in ethnic Asians and their association with outcome in non-small-cell lung cancer patients. Lung Cancer 63:121–127.
  • Souglakos J, Boukovinas I, Taron M, Mendez P, Mavroudis D, Tripaki M, et al. (2008). Ribonucleotide reductase subunits M1 and M2 mRNA expression levels and clinical outcome of lung adenocarcinoma patients treated with docetaxel/gemcitabine. Br J Cancer 98:1710–1715.
  • Spratlin J, Sangha R, Glubrecht D, Dabbagh L, Young JD, Dumontet C, et al. (2004). The absence of human equilibrative nucleoside transporter 1 is associated with reduced survival in patients with gemcitabine-treated pancreas adenocarcinoma. Clin Cancer Res 10:6956–6961.
  • Sugiyama E, Kaniwa N, Kim SR, Kikura-Hanajiri R, Hasegawa R, Maekawa K, et al. (2007). Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism. J Clin Oncol 25:32–42.
  • Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matsui K, et al. (2000). A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404:42–49.
  • Ueno H, Kiyosawa K, Kaniwa N. (2007). Pharmacogenomics of gemcitabine: can genetic studies lead to tailor-made therapy? Br J Cancer 97:145–151.
  • Ulrich CM, Robien K, McLeod HL. (2003). Cancer pharmacogenetics: polymorphisms, pathways, and beyond. Nat Rev Cancer 3:912–920.
  • Vasile E, Giovannetti E, Tibaldi V, Met S. (2006). Analysis of single-nucleotide poylmorphisms (SNPs) of cytidine pigmentosum group D (XPD) genes for the prediction of clinical response to gemcitabine and cisplatin in advanced non-small-cell lung cancer (NSCLC) patients. J Clin Oncol 24: abstract 7219.
  • Yeo W, Soong R, Chuah BY, Tan S, Lim S, Cordero MT, et al. (2008). Correlation of RRM1 promoter region single-nucleotide polymporphisms (SNPs) with response and outcome in breast cancer patients treated with gemcitabine-based chemotherapy. J Clin Oncol 26: abstract 14513.
  • Yonemori K, Ueno H, Okusaka T, Yamamoto N, Ikeda M, Saijo N, et al. (2005). Severe drug toxicity associated with a single-nucleotide polymorphism of the cytidine deaminase gene in a Japanese cancer patient treated with gemcitabine plus cisplatin. Clin Cancer Res 11:2620–2624.
  • Yong WP, Innocenti F, Ratain MJ. (2006). The role of pharmacogenetics in cancer therapeutics. Br J Clin Pharmacol 62:35–46.
  • Yue L, Saikawa Y, Ota K, Tanaka M, Nishimura R, Uehara T, et al. (2003). A functional single-nucleotide polymorphism in the human cytidine deaminase gene contributing to ara-C sensitivity. Pharmacogenetics 13:29–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.