2,666
Views
131
CrossRef citations to date
0
Altmetric
Review Article

New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme

, , , , &
Pages 573-643 | Received 22 Dec 2008, Accepted 03 Jun 2009, Published online: 01 Aug 2009

References

  • Abass, K., Reponen, P., Turpeinen, M., Jalonen, J., Pelkonen, O. (2007). Characterization of diuron N-demethylation by mammalian hepatic microsomes and cDNA-expressed human cytochrome P450 enzymes. Drug Metab Dispos 35:1634–1641.
  • Akutsu, T., Kobayashi, K., Sakurada, K., Ikegaya, H., Furihata, T., Chiba, K. (2007). Identification of human cytochrome P450 isozymes involved in diphenhydramine N-demethylation. Drug Metab Dispos 35:72–78.
  • Allorge, D., Breant, D., Harlow, J., Chowdry, J., Lo-Guidice, J. M., Chevalier, D., et al. (2005). Functional analysis of CYP2D6.31 variant: homology modeling suggests possible disruption of redox partner interaction by Arg440His substitution. Proteins 59:339–346.
  • Asano, T., Kushida, H., Sadakane, C., Ishihara, K., Wakui, Y., Yanagisawa, T., et al. (2001). Metabolism of ipecac alkaloids cephaeline and emetine by human hepatic microsomal cytochrome P450s, and their inhibitory effects on P450 enzyme activities. Biol Pharm Bull 24:678–682.
  • Bachus, R., Bickel, U., Thomsen, T., Roots, I., Kewitz, H. (1999). The O-demethylation of the antidementia drug galanthamine is catalysed by cytochrome P450 2D6. Pharmacogenetics 9:661–668.
  • Barner, E. L., Gray, S. L. (1998). Donepezil use in Alzheimer disease. Ann Pharmacother 32:70–77.
  • Barnhart, J. W. (1980). The urinary excretion of dextromethorphan and three metabolites in dogs and humans. Toxicol Appl Pharmacol 55:43–48.
  • Barsoum, N. J., Gough, A. W., Sturgess, J. M., de la Iglesia, F. A. (1986). Parkinson-like syndrome in nonhuman primates receiving a tetrahydropyridine derivative. Neurotoxicology 7:119–126.
  • Bazeley, P. S., Prithivi, S., Struble, C. A., Povinelli, R. J., Sem, D. S. (2006). Synergistic use of compound properties and docking scores in neural network modeling of CYP2D6 binding: predicting affinity and conformational sampling. J Chem Inf Model 46:2698–2708.
  • Bertelsen, K. M., Venkatakrishnan, K., Von Moltke, L. L., Obach, R. S., Greenblatt, D. J. (2003). Apparent mechanism-based inhibition of human CYP2D6 in vitro by paroxetine: comparison with fluoxetine and quinidine. Drug Metab Dispos 31:289–293.
  • Beverage, J. N., Sissung, T. M., Sion, A. M., Danesi, R., Figg, W. D. (2007). CYP2D6 polymorphisms and the impact on tamoxifen therapy. J Pharm Sci 96:2224–2231.
  • Bichara, N., Ching, M. S., Blake, C. L., Ghabrial, H., Smallwood, R. A. (1996). Propranolol hydroxylation and N-desisopropylation by cytochrome P4502D6: studies using the yeast-expressed enzyme and NADPH/O2 and cumene hydroperoxide-supported reactions. Drug Metab Dispos 24:112–118.
  • Blobaum, A. L., Kent, U. M., Alworth, W. L., Hollenberg, P. F. (2004). Novel reversible inactivation of cytochrome P450 2E1 T303A by tert-butyl acetylene: the role of threonine 303 in proton delivery to the active site of cytochrome P450 2E1. J Pharmacol Exp Ther 310:281–290.
  • Bottiger, Y., Dostert, P., Benedetti, M. S., Bani, M., Fiorentini, F., Casati, M., et al. (1996). Involvement of CYP2D6 but not CYP2C19 in nicergoline metabolism in humans. Br J Clin Pharmacol 42:707–711.
  • Braga, P. C., Fossati, A., Vimercati, M. G., Caputo, R., Guffanti, E. E. (1994). Dextrorphan and dextromethorphan: comparative antitussive effects on guinea pigs. Drugs Exp Clin Res 20:199–203.
  • Broly, F., Meyer, U. A. (1993). Debrisoquine oxidation polymorphism: phenotypic consequences of a 3-base-pair deletion in exon 5 of the CYP2D6 gene. Pharmacogenetics 3:123–130.
  • Busse, D., Cosme, J., Beaune, P., Kroemer, H. K., Eichelbaum, M. (1995). Cytochromes of the P450 2C subfamily are the major enzymes involved in the O-demethylation of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 353:116–121.
  • Carcillo, J. A., Adedoyin, A., Burckart, G. J., Frye, R. F., Venkataramanan, R., Knoll, C., et al. (2003). Coordinated intrahepatic and extrahepatic regulation of cytochrome P450 2D6 in healthy subjects and in patients after liver transplantation. Clin Pharmacol Ther 73:456–467.
  • Chauret, N., Dobbs, B., Lackman, R. L., Bateman, K., Nicoll-Griffith, D. A., Stresser, D. M., et al. (2001). The use of 3-[2-(N,N-diethyl-N- methylammonium)ethyl]-7-methoxy-4- methylcoumarin (AMMC) as a specific CYP2D6 probe in human liver microsomes. Drug Metab Dispos 29:1196–1200.
  • Chen, C. K., Shokhireva, T., Berry, R. E., Zhang, H., Walker, F. A. (2008). The effect of mutation of F87 on the properties of CYP102A1-CYP4C7 chimeras: altered regiospecificity and substrate selectivity. J Biol Inorg Chem 13:813–824.
  • Ching, M. S., Blake, C. L., Ghabrial, H., Ellis, S. W., Lennard, M. S., Tucker, G. T., et al. (1995). Potent inhibition of yeast-expressed CYP2D6 by dihydroquinidine, quinidine, and its metabolites. Biochem Pharmacol 50:833–837.
  • Coleman, T., Ellis, S. W., Martin, I. J., Lennard, M. S., Tucker, G. T. (1996). 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is N-demethylated by cytochromes P450 2D6, 1A2, and 3A4— implications for susceptibility to Parkinson’s disease. J Pharmacol Exp Ther 277:685–690.
  • Compagnone, N. A., Mellon, S. H. (2000). Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 21:1–56.
  • Cook Sangar, M., Anandatheerthavarada, H. K., Tang, W., Prabu, S. K., Martin, M. V., Dostalek, M., et al. (2009). Human liver mitochondrial cytochrome P450 2D6—individual variations and implications in drug metabolism. FEBS J 2009 May 11. [Epub ahead of print]
  • Coon, M. J., Vaz, A. D., McGinnity, D. F., Peng, H. M. (1998). Multiple activated oxygen species in P450 catalysis: contributions to specificity in drug metabolism. Drug Metab Dispos 26:1190–1193.
  • Crewe, H. K., Notley, L. M., Wunsch, R. M., Lennard, M. S., Gillam, E. M. (2002). Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4’-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos 30:869–874.
  • Cribb, A., Nuss, C., Wang, R. (1995). Antipeptide antibodies against overlapping sequences differentially inhibit human CYP2D6. Drug Metab Dispos 23:671–675.
  • Cupp-Vickery, J. R., Han, O., Hutchinson, C. R., Poulos, T. L. (1996). Substrate-assisted catalysis in cytochrome P450eryF. Nat Struct Biol 3:632–637.
  • Curnow, K. M., Slutsker, L., Vitek, J., Cole, T., Speiser, P. W., New, M. I., et al. (1993). Mutations in the CYP11B1 gene causing congenital adrenal hyperplasia and hypertension cluster in exons 6, 7, and 8. Proc Natl Acad Sci U S A 90:4552–4556.
  • Dalvie, D. K., O’Connell, T. N. (2004). Characterization of novel dihydrothienopyridinium and thienopyridinium metabolites of ticlopidine in vitro: role of peroxidases, cytochrome P450, and monoamine oxidases. Drug Metab Dispos 32:49–57.
  • de Graaf, C., Oostenbrink, C., Keizers, P. H., van der Wijst, T., Jongejan, A., Vermeulen, N. P. (2006). Catalytic site prediction and virtual screening of cytochrome P450 2D6 substrates by consideration of water and rescoring in automated docking. J Med Chem 49:2417–2430.
  • de Graaf, C., Oostenbrink, C., Keizers, P. H., van Vugt-Lussenburg, B. M., van Waterschoot, R. A., Tschirret-Guth, R. A., et al. (2007). Molecular modeling-guided site-directed mutagenesis of cytochrome P450 2D6. Curr Drug Metab 8:59–77.
  • de Groot, M. J., Ackland, M. J., Horne, V. A., Alex, A. A., Jones, B. C. (1999a). Novel approach to predicting P450-mediated drug metabolism: development of a combined protein and pharmacophore model for CYP2D6. J Med Chem 42:1515–1524.
  • de Groot, M. J., Ackland, M. J., Horne, V. A., Alex, A. A., Jones, B. C. (1999b). A novel approach to predicting P450 mediated drug metabolism. CYP2D6 catalyzed N-dealkylation reactions and qualitative metabolite predictions using a combined protein and pharmacophore model for CYP2D6. J Med Chem 42:4062–4070.
  • de Groot, M. J., Bijloo, G. J., Hansen, K. T., Vermeulen, N. P. (1995). Computer prediction and experimental validation of cytochrome P450 2D6-dependent oxidation of GBR 12909. Drug Metab Dispos 23:667–669.
  • de Groot, M. J., Bijloo, G. J., Martens, B. J., van Acker, F. A., Vermeulen, N. P. (1997a). A refined substrate model for human cytochrome P450 2D6. Chem Res Toxicol 10:41–48.
  • de Groot, M. J., Bijloo, G. J., van Acker, F. A., Fonseca Guerra, C., Snijders, J. G., Vermeulen, N. P. (1997b). Extension of a predictive substrate model for human cytochrome P4502D6. Xenobiotica 27:357–368.
  • de Groot, M. J., Vermeulen, N. P., Kramer, J. D., van Acker, F. A., Donne-Op den Kelder, G. M. (1996). A three-dimensional protein model for human cytochrome P450 2D6 based on the crystal structures of P450 101, P450 102, and P450 108. Chem Res Toxicol 9:1079–1091.
  • De Rienzo, F., Fanelli, F., Menziani, M. C., De Benedetti, P. G. (2000). Theoretical investigation of substrate specificity for cytochromes P450 IA2, P450 IID6, and P450 IIIA4. J Comput Aided Mol Des 14:93–116.
  • Dehal, S. S., Kupfer, D. (1997). CYP2D6 catalyzes tamoxifen 4- hydroxylation in human liver. Cancer Res. 57: 3402–3406.
  • Dehal, S. S., Kupfer, D. (1999). Cytochrome P450 3A and 2D6 catalyze ortho hydroxylation of 4-hydroxytamoxifen and 3- hydroxytamoxifen (droloxifene) yielding tamoxifen catechol: involvement of catechols in covalent binding to hepatic proteins. Drug Metab Dispos. 27: 681–688.
  • Desta, Z., Kerbusch, T., Soukhova, N., Richard, E., Ko, J. W., Flockhart, D. A. (1998). Identification and characterization of human cytochrome P450 isoforms interacting with pimozide. J Pharmacol Exp Ther 285:428–437.
  • Desta, Z., Wu, G. M., Morocho, A. M., Flockhart, D. A. (2002). The gastroprokinetic and antiemetic drug metoclopramide is a substrate and inhibitor of cytochrome P450 2D6. Drug Metab Dispos 30:336–343.
  • Diaz, D. S., Kozar, M. P., Smith, K. S., Asher, C. O., Sousa, J. C., Schiehser, G. A., et al. (2008). Role of specific cytochrome P450 isoforms in the conversion of phenoxypropoxybiguanide analogs in human liver microsomes to potent antimalarial dihydrotriazines. Drug Metab Dispos 36:380–385.
  • Duclos-Vallee, J. C., Hajoui, O., Yamamoto, A. M., Jacz-Aigrain, E., Alvarez, F. (1995). Conformational epitopes on CYP2D6 are recognized by liver/kidney microsomal antibodies. Gastroenterology 108:470–476.
  • Edwards, R. J., Murray, B. P., Boobis, A. R., Davies, D. S. (1989). Identification and location of α-helices in mammalian cytochromes P450. Biochemistry 28:3762–3770.
  • Eichelbaum, M., Baur, M. P., Dengler, H. J., Osikowska-Evers, B. O., Tieves, G., Zekorn, C., et al. (1987). Chromosomal assignment of human cytochrome P-450 (debrisoquine/sparteine type) to chromosome 22. Br J Clin Pharmacol 23:455–458.
  • Eichelbaum, M., Spannbrucker, N., Dengler, H. J. (1975). Proceedings: N-oxidation of sparteine in man and its interindividual differences. Naunyn Schmiedebergs Arch Pharmacol 287(Suppl):R94.
  • Eiermann, B., Edlund, P. O., Tjernberg, A., Dalen, P., Dahl, M. L., Bertilsson, L. (1998). 1- and 3-Hydroxylations, in addition to 4-hydroxylation, of debrisoquine are catalyzed by cytochrome P450 2D6 in humans. Drug Metab Dispos 26:1096–1101.
  • Ekins, S., Bravi, G., Binkley, S., Gillespie, J. S., Ring, B. J., Wikel, J. H., et al. (1999). Three- and four-dimensional quantitative structure-activity relationship (3D/4D-QSAR) analyses of CYP2D6 inhibitors. Pharmacogenetics 9:477–489.
  • Ekroos, M., Sjogren, T. (2006). Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci U S A 103:13682–13687.
  • Ellis, S. W., Hayhurst, G. P., Lightfoot, T., Smith, G., Harlow, J., Rowland-Yeo, K., et al. (2000). Evidence that serine 304 is not a key ligand-binding residue in the active site of cytochrome P450 2D6. Biochem J 345(Pt 3):565–571.
  • Ellis, S. W., Hayhurst, G. P., Smith, G., Lightfoot, T., Wong, M. M., Simula, A. P., et al. (1995). Evidence that aspartic acid 301 is a critical substrate-contact residue in the active site of cytochrome P450 2D6. J Biol Chem 270:29055–29058.
  • Ellis, S. W., Rowland, K., Ackland, M. J., Rekka, E., Simula, A. P., Lennard, M. S., et al. (1996). Influence of amino acid residue 374 of cytochrome P450 2D6 (CYP2D6) on the regio- and enantio- selective metabolism of metoprolol. Biochem J 316(Pt 2):647–654.
  • Emborg, M. E. (2007). Nonhuman primate models of Parkinson’s disease. Ilar J 48:339–355.
  • Erickson, D. A., Hollfelder, S., Tenge, J., Gohdes, M., Burkhardt, J. J., Krieter, P. A. (2007). In vitro metabolism of the analgesic bicifadine in the mouse, rat, monkey, and human. Drug Metab Dispos 35:2232–2241.
  • Erickson, D. A., Mather, G., Trager, W. F., Levy, R. H., Keirns, J. J. (1999). Characterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochromes P450. Drug Metab Dispos 27:1488–1495.
  • Evert, B., Eichelbaum, M., Haubruck, H., Zanger, U. M. (1997). Functional properties of CYP2D6.1 (wild-type) and CYP2D6.7 (His324Pro) expressed by recombinant baculovirus in insect cells. Naunyn Schmiedebergs Arch Pharmacol 355:309–318.
  • Evert, B., Griese, E. U., Eichelbaum, M. (1994). A missense mutation in exon 6 of the CYP2D6 gene leading to a histidine 324 to proline exchange is associated with the poor metabolizer phenotype of sparteine. Naunyn Schmiedebergs Arch Pharmacol 350:434–439.
  • Ferrari, S., Leemann, T., Dayer, P. (1991). The role of lipophilicity in the inhibition of polymorphic cytochrome P450IID6 oxidation by b-blocking agents in vitro. Life Sci 48:2259–2265.
  • Fischer, V., Johanson, L., Heitz, F., Tullman, R., Graham, E., Baldeck, J. P., et al. (1999). The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor fluvastatin: effect on human cytochrome P450 and implications for metabolic drug interactions. Drug Metab Dispos 27:410–416.
  • Fitzsimmons, M. E., Collins, J. M. (1997). Selective biotransformation of the human immunodeficiency virus protease inhibitor saquinavir by human small-intestinal cytochrome P4503A4: potential contribution to high first-pass metabolism. Drug Metab Dispos 25:256–266.
  • Flanagan, J. U., Marechal, J. D., Ward, R., Kemp, C. A., McLaughlin, L. A., Sutcliffe, M. J., et al. (2004). Phe120 contributes to the regiospecificity of cytochrome P450 2D6: mutation leads to the formation of a novel dextromethorphan metabolite. Biochem J 380:353–360.
  • Freeman, E. R., Bloom, D. A., McGuire, E. J. (2001). A brief history of testosterone. J Urol 165:371–373.
  • Fukuda, T., Nishida, Y., Imaoka, S., Hiroi, T., Naohara, M., Funae, Y., et al. (2000). The decreased in vivo clearance of CYP2D6 substrates by CYP2D6*10 might be caused not only by the low-expression, but also by low affinity of CYP2D6. Arch Biochem Biophys 380:303–308.
  • Furuta, S., Kamada, E., Suzuki, T., Sugimoto, T., Kawabata, Y., Shinozaki, Y., et al. (2001). Inhibition of drug metabolism in human liver microsomes by nizatidine, cimetidine, and omeprazole. Xenobiotica 31:1–10.
  • Gaedigk, A., Bradford, L. D., Marcucci, K. A., Leeder, J. S. (2002). Unique CYP2D6 activity distribution and genotype-phenotype discordance in black Americans. Clin Pharmacol Ther 72:76–89.
  • Gaedigk, A., Coetsee, C. (2008). The CYP2D6 gene locus in South African Coloureds: unique allele distributions, novel alleles, and gene arrangements. Eur J Clin Pharmacol 64:465–475.
  • Gerber, N. C., Sligar, S. G. (1994). A role for Asp-251 in cytochrome P450cam oxygen activation. J Biol Chem 269:4260–4266.
  • Ghobadi, C., Gregory, A., Crewe, H. K., Rostami-Hodjegan, A., Lennard, M. S. (2008). CYP2D6 is primarily responsible for the metabolism of clomiphene. Drug Metab Pharmacokinet 23:101–105.
  • Gilham, D. E., Cairns, W., Paine, M. J., Modi, S., Poulsom, R., Roberts, G. C., et al. (1997). Metabolism of MPTP by cytochrome P450 2D6 and the demonstration of 2D6 mRNA in human foetal and adult brain by in situ hybridization. Xenobiotica 27:111–125.
  • Gonzalez, F. J., Skoda, R. C., Kimura, S., Umeno, M., Zanger, U. M., Nebert, D. W., et al. (1988). Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 331:442–446.
  • Goodford, P. J. (1985). A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28:849–857.
  • Goto, A., Adachi, Y., Inaba, A., Nakajima, H., Kobayashi, H., Sakai, K. (2004). Identification of human P450 isoforms involved in the metabolism of the antiallergic drug, oxatomide, and its inhibitory effect on enzyme activity. Biol Pharm Bull 27:684–690.
  • Goto, A., Ueda, K., Inaba, A., Nakajima, H., Kobayashi, H., Sakai, K. (2005). Identification of human P450 isoforms involved in the metabolism of the antiallergic drug, oxatomide, and its kinetic parameters and inhibition constants. Biol Pharm Bull 28:328–334.
  • Gotoh, O. (1992). Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 267:83–90.
  • Grace, J. M., Kinter, M. T., Macdonald, T. L. (1994). Atypical metabolism of deprenyl and its enantiomer, (S)-(+)-N,α-dimethyl-N-propynylphenethylamine, by cytochrome P450 2D6. Chem Res Toxicol 7:286–290.
  • Griese, E. U., Zanger, U. M., Brudermanns, U., Gaedigk, A., Mikus, G., Morike, K., et al. (1998). Assessment of the predictive power of genotypes for the in vivo catalytic function of CYP2D6 in a German population. Pharmacogenetics 8:15–26.
  • Gueguen, M., Boniface, O., Bernard, O., Clerc, F., Cartwright, T., Alvarez, F. (1991). Identification of the main epitope on human cytochrome P450 2D6 recognized by antiliver kidney microsome antibody. J Autoimmun 4:607–615.
  • Guengerich, F. P., Hanna, I. H., Martin, M. V., Gillam, E. M. (2003). Role of glutamic acid 216 in cytochrome P450 2D6 substrate binding and catalysis. Biochemistry 42:1245–1253.
  • Guengerich, F. P., Miller, G. P., Hanna, I. H., Martin, M. V., Leger, S., Black, C., et al. (2002). Diversity in the oxidation of substrates by cytochrome P450 2D6: lack of an obligatory role of aspartate 301-substrate electrostatic bonding. Biochemistry 41:11025–11034.
  • Guengerich, F. P., Muller-Enoch, D. Blair, I. A. (1986). Oxidation of quinidine by human liver cytochrome P450. Mol Pharmacol 30:287–295.
  • Haines, D. C., Tomchick, D. R., Machius, M., Peterson, J. A. (2001). Pivotal role of water in the mechanism of P450BM-3. Biochemistry 40:13456–13465.
  • Haining, R. L., Jones, J. P., Henne, K. R., Fisher, M. B., Koop, D. R., Trager, W. F., et al. (1999). Enzymatic determinants of the substrate specificity of CYP2C9: role of B’-C loop residues in providing the π-stacking anchor site for warfarin binding. Biochemistry 38:3285–3292.
  • Haji-Momenian, S., Rieger, J. M., Macdonald, T. L., Brown, M. L. (2003). Comparative molecular field analysis and QSAR on substrates binding to cytochrome P450 2D6. Bioorg Med Chem 11:5545–5554.
  • Halliday, R. C., Jones, B. C., Smith, D. A., Kitteringham, N. R., Park, B. K. (1995). An investigation of the interaction between halofantrine, CYP2D6, and CYP3A4: studies with human liver microsomes and heterologous enzyme expression systems. Br J Clin Pharmacol 40:369–378.
  • Hanna, I. H., Kim, M. S., Guengerich, F. P. (2001a). Heterologous expression of cytochrome P450 2D6 mutants, electron transfer, and catalysis of bufuralol hydroxylation: the role of aspartate 301 in structural integrity. Arch Biochem Biophys 393:255–261.
  • Hanna, I. H., Krauser, J. A., Cai, H., Kim, M. S., Guengerich, F. P. (2001b). Diversity in mechanisms of substrate oxidation by cytochrome P450 2D6. Lack of an allosteric role of NADPH-cytochrome P450 reductase in catalytic regioselectivity. J Biol Chem 276:39553–39561.
  • Harvey, J. N., Bathelt, C. M., Mulholland, A. J. (2006). QM/MM modeling of compound I active species in cytochrome P450, cytochrome C peroxidase, and ascorbate peroxidase. J Comput Chem 27:1352–1362.
  • Hasemann, C. A., Kurumbail, R. G., Boddupalli, S. S., Peterson, J. A., Deisenhofer, J. (1995). Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure 3:41–62.
  • Hayhurst, G. P., Harlow, J., Chowdry, J., Gross, E., Hilton, E., Lennard, M. S., et al. (2001). Influence of phenylalanine-481 substitutions on the catalytic activity of cytochrome P450 2D6. Biochem J 355:373–379.
  • He, N., Zhang, W. Q., Shockley, D., Edeki, T. (2002). Inhibitory effects of H1-antihistamines on CYP2D6- and CYP2C9-mediated drug metabolic reactions in human liver microsomes. Eur J Clin Pharmacol 57:847–851.
  • Hellum, B. H., Nilsen, O. G. (2007). The in vitro inhibitory potential of trade herbal products on human CYP2D6-mediated metabolism and the influence of ethanol. Basic Clin Pharmacol Toxicol 101:350–358.
  • Herd, M. B., Belelli, D., Lambert, J. J. (2007). Neurosteroid modulation of synaptic and extrasynaptic GABAA receptors. Pharmacol Ther 116:20–34.
  • Herraiz, T., Guillen, H., Aran, V. J., Idle, J. R., Gonzalez, F. J. (2006). Comparative aromatic hydroxylation and N-demethylation of MPTP neurotoxin and its analogs, N-methylated β-carboline and isoquinoline alkaloids, by human cytochrome P450 2D6. Toxicol Appl Pharmacol 216:387–398.
  • Heydari, A., Yeo, K. R., Lennard, M. S., Ellis, S. W., Tucker, G. T., Rostami-Hodjegan, A. (2004). Mechanism-based inactivation of CYP2D6 by methylenedioxymethamphetamine. Drug Metab Dispos 32:1213–1217.
  • Hidestrand, M., Oscarson, M., Salonen, J. S., Nyman, L., Pelkonen, O., Turpeinen, M., et al. (2001). CYP2B6 and CYP2C19 as the major enzymes responsible for the metabolism of selegiline, a drug used in the treatment of Parkinson’s disease, as revealed from experiments with recombinant enzymes. Drug Metab Dispos 29:1480–1484.
  • Hinson, J. A., Pumford, N. R., Roberts, D. W. (1995). Mechanisms of acetaminophen toxicity: immunochemical detection of drug-protein adducts. Drug Metab Rev 27:72–92.
  • Hiroi, T., Chow, T., Imaoka, S., Funae, Y. (2002). Catalytic specificity of CYP2D isoforms in rat and human. Drug Metab Dispos 30:970–976.
  • Hiroi, T., Imaoka, S., Funae, Y. (1998). Dopamine formation from tyramine by CYP2D6. Biochem Biophys Res Commun 249:838–843.
  • Hiroi, T., Kishimoto, W., Chow, T., Imaoka, S., Igarashi, T., Funae, Y. (2001). Progesterone oxidation by cytochrome P450 2D isoforms in the brain. Endocrinology 142:3901–3908.
  • Hishiki, T., Shimada, H., Nagano, S., Egawa, T., Kanamori, Y., Makino, R., et al. (2000). X-ray crystal structure and catalytic properties of Thr252Ile mutant of cytochrome P450cam: roles of Thr252 and water in the active center. J Biochem 128:965–974.
  • Hritz, J., de Ruiter, A., Oostenbrink, C. (2008). Impact of plasticity and flexibility on docking results for cytochrome P450 2D6: a combined approach of molecular dynamics and ligand docking. J Med Chem 51:7469–7477.
  • Hutzler, J. M., Powers, F. J., Wynalda, M. A., Wienkers, L. C. (2003a). Effect of carbonate anion on cytochrome P450 2D6-mediated metabolism in vitro: the potential role of multiple oxygenating species. Arch Biochem Biophys 417:165–175.
  • Hutzler, J. M., Walker, G. S., Wienkers, L. C. (2003b). Inhibition of cytochrome P450 2D6: structure-activity studies using a series of quinidine and quinine analogues. Chem Res Toxicol 16:450–459.
  • Ibeanu, G. C., Blaisdell, J., Ghanayem, B. I., Beyeler, C., Benhamou, S., Bouchardy, C., et al. (1998). An additional defective allele, CYP2C19*5, contributes to the S-mephenytoin poor metabolizer phenotype in Caucasians. Pharmacogenetics 8:129–135.
  • Imai, M., Shimada, H., Watanabe, Y., Matsushima-Hibiya, Y., Makino, R., Koga, H., et al. (1989). Uncoupling of the cytochrome P-450cam monooxygenase reaction by a single mutation, threonine-252, to alanine or valine: possible role of the hydroxy amino acid in oxygen activation. Proc Natl Acad Sci U S A 86:7823–7827.
  • Imai, T., Taketani, M., Suzu, T., Kusube, K., Otagiri, M. (1999). In vitro identification of the human cytochrome P450 enzymes involved in the N-demethylation of azelastine. Drug Metab Dispos 27:942–946.
  • Ingelman-Sundberg, M. (2005). Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects, and functional diversity. Pharmacogenomics J 5:6–13.
  • Ingelman-Sundberg, M., Sim, S. C., Gomez, A., Rodriguez-Antona, C. (2007). Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic, and clinical aspects. Pharmacol Ther 116:496–526.
  • Islam, S. A., Wolf, C. R., Lennard, M. S., Sternberg, M. J. (1991). A three-dimensional molecular template for substrates of human cytochrome P450 involved in debrisoquine 4- hydroxylation. Carcinogenesis 12:2211–2219.
  • Ito, Y., Fisher, C. R., Conte, F. A., Grumbach, M. M., Simpson, E. R. (1993). Molecular basis of aromatase deficiency in an adult female with sexual infantilism and polycystic ovaries. Proc Natl Acad Sci U S A 90:11673–11677.
  • Ito, Y., Kondo, H., Goldfarb, P. S., Lewis, D. F. (2008). Analysis of CYP2D6 substrate interactions by computational methods. J Mol Graph Mod 26:947–956.
  • Jacolot, F., Simon, I., Dreano, Y., Beaune, P., Riche, C., Berthou, F. (1991). Identification of the cytochrome P450 3A family as the enzymes involved in the N-demethylation of tamoxifen in human liver microsomes. Biochem Pharmacol 41:1911–1919.
  • Jenner, P. (2003). The contribution of the MPTP-treated primate model to the development of new treatment strategies for Parkinson’s disease. Parkinsonism Relat Disord 9:131–137.
  • Johansson, I., Oscarson, M., Yue, Q. Y., Bertilsson, L., Sjoqvist, F., Ingelman-Sundberg, M. (1994). Genetic analysis of the Chinese cytochrome P450 2D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol Pharmacol 46:452–459.
  • Jones, B. C., Hyland, R., Ackland, M., Tyman, C. A., Smith, D. A. (1998). Interaction of terfenadine and its primary metabolites with cytochrome P450 2D6. Drug Metab Dispos 26:875–882.
  • Kalgutkar, A. S., Zhou, S., Fahmi, O. A., Taylor, T. J. (2003). Influence of lipophilicity on the interactions of N-alkyl-4-phenyl-1,2,3,6-tetrahydropyridines and their positively charged N-alkyl-4-phenylpyridinium metabolites with cytochrome P450 2D6. Drug Metab Dispos 31:596–605.
  • Keizers, P. H., de Graaf, C., de Kanter, F. J., Oostenbrink, C., Feenstra, K. A., Commandeur, J. N., et al. (2005a). Metabolic regio- and stereoselectivity of cytochrome P450 2D6 towards 3,4-methylenedioxy-N-alkylamphetamines: in silico predictions and experimental validation. J Med Chem 48:6117–6127.
  • Keizers, P. H., Lussenburg, B. M., de Graaf, C., Mentink, L. M., Vermeulen, N. P., Commandeur, J. N. (2004). Influence of phenylalanine 120 on cytochrome P450 2D6 catalytic selectivity and regiospecificity: crucial role in 7-methoxy-4-(aminomethyl)-coumarin metabolism. Biochem Pharmacol 68:2263–2271.
  • Keizers, P. H., Schraven, L. H., de Graaf, C., Hidestrand, M., Ingelman-Sundberg, M., van Dijk, B. R., et al. (2005b). Role of the conserved threonine 309 in mechanism of oxidation by cytochrome P450 2D6. Biochem Biophys Res Commun 338:1065–1074.
  • Keizers, P. H., Van Dijk, B. R., De Graaf, C., Van Vugt-Lussenburg, B. M., Vermeulen, N. P., Commandeur, J. N. (2006). Metabolism of N-substituted 7-methoxy-4-(aminomethyl)-coumarins by cytochrome P450 2D6 mutants and the indication of additional substrate interaction points. Xenobiotica 36:763–771.
  • Kemp, C. A., Flanagan, J. U., van Eldik, A. J., Marechal, J. D., Wolf, C. R., Roberts, G. C., et al. (2004). Validation of model of cytochrome P450 2D6: an in silico tool for predicting metabolism and inhibition. J Med Chem 47:5340–5346.
  • Kimura, S., Umeno, M., Skoda, R. C., Meyer, U. A., Gonzalez, F. J. (1989). The human debrisoquine 4-hydroxylase (CYP2D) locus: sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene. Am J Hum Genet 45:889–904.
  • Kirton, S. B., Kemp, C. A., Tomkinson, N. P., St-Gallay, S., Sutcliffe, M. J. (2002). Impact of incorporating the 2C5 crystal structure into comparative models of cytochrome P450 2D6. Proteins 49:216–231.
  • Kishimoto, W., Hiroi, T., Sakai, K., Funae, Y., Igarashi, T. (1997). Metabolism of epinastine, a histamine H1 receptor antagonist, in human liver microsomes in comparison with that of terfenadine. Res Commun Mol Pathol Pharmacol 98:273–292.
  • Kishimoto, W., Hiroi, T., Shiraishi, M., Osada, M., Imaoka, S., Kominami, S., et al. (2004). Cytochrome P450 2D catalyze steroid 21-hydroxylation in the brain. Endocrinology 145:699–705.
  • Kjellander, B., Masimirembwa, C. M., Zamora, I. (2007). Exploration of enzyme-ligand interactions in CYP2D6 and 3A4 homology models and crystal structures using a novel computational approach. J Chem Inf Mod 47:1234–1247.
  • Klein, K., Tatzel, S., Raimundo, S., Saussele, T., Hustert, E., Pleiss, J., et al. (2007). A natural variant of the heme-binding signature (R441C) resulting in complete loss of function of CYP2D6. Drug Metab Dispos 35:1247–1250.
  • Knodell, R. G., Browne, D. G., Gwozdz, G. P., Brian, W. R., Guengerich, F. P. (1991). Differential inhibition of individual human liver cytochromes P-450 by cimetidine. Gastroenterology 101:1680–1691.
  • Korzekwa, K. R., Jones, J. P. (1993). Predicting the cytochrome P450 mediated metabolism of xenobiotics. Pharmacogenetics 3:1–18.
  • Kotsuma, M., Hanzawa, H., Iwata, Y., Takahashi, K., Tokui, T. (2008a). Novel binding mode of the acidic CYP2D6 substrates pactimibe and its metabolite R-125528. Drug Metab Dispos 36:1938–1943.
  • Kotsuma, M., Tokui, T., Freudenthaler, S., Nishimura, K. (2008b). Effects of ketoconazole and quinidine on pharmacokinetics of pactimibe and its plasma metabolite, R-125528, in human. Drug Metab Dispos 36:1505–1511.
  • Kotsuma, M., Tokui, T., Ishizuka-Ozeki, T., Honda, T., Iwabuchi, H., Murai, T., et al. (2008c). CYP2D6-mediated metabolism of a novel acyl coenzyme A:cholesterol acyltransferase inhibitor, pactimibe, and its unique plasma metabolite, R-125528. Drug Metab Dispos 36:529–534.
  • Koudriakova, T., Iatsimirskaia, E., Utkin, I., Gangl, E., Vouros, P., Storozhuk, E., et al. (1998). Metabolism of the human immunodeficiency virus protease inhibitors, indinavir and ritonavir, by human intestinal microsomes and expressed cytochrome P4503A4/3A5: mechanism-based inactivation of cytochrome P4503A by ritonavir. Drug Metab Dispos 26:552–561.
  • Koymans, L., Vermeulen, N. P., van Acker, S. A., te Koppele, J. M., Heykants, J. J., Lavrijsen, K., et al. (1992). A predictive model for substrates of cytochrome P450-debrisoquine (2D6). Chem Res Toxicol 5:211–219.
  • Koymans, L. M., Vermeulen, N. P., Baarslag, A., Donne-Op den Kelder, G. M. (1993). A preliminary 3D model for cytochrome P450 2D6 constructed by homology model building. J Comput Aided Mol Des 7:281–289.
  • Kreth, K., Kovar, K., Schwab, M., Zanger, U. M. (2000). Identification of the human cytochromes P450 involved in the oxidative metabolism of “Ecstasy”-related designer drugs. Biochem Pharmacol 59:1563–1571.
  • Ku, H. Y., Ahn, H. J., Seo, K. A., Kim, H., Oh, M., Bae, S. K., et al. (2008). The contributions of cytochromes P450 3A4 and 3A5 to the metabolism of the phosphodiesterase type 5 inhibitors sildenafil, udenafil, and vardenafil. Drug Metab Dispos 36:986–990.
  • Kubota, T., Yamaura, Y., Ohkawa, N., Hara, H., Chiba, K. (2000). Frequencies of CYP2D6 mutant alleles in a normal Japanese population and metabolic activity of dextromethorphan O-demethylation in different CYP2D6 genotypes. Br J Clin Pharmacol 50:31–34.
  • Kudo, S., Okumura, H., Miyamoto, G., Ishizaki, T. (1999). Cytochrome P450 isoforms involved in carboxylic acid ester cleavage of Hantzsch pyridine ester of pranidipine. Drug Metab Dispos 27:303–308.
  • Kumar, G. N., Rodrigues, A. D., Buko, A. M., Denissen, J. F. (1996). Cytochrome P450–mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J Pharmacol Exp Ther 277:423–431.
  • Laine, J. E., Auriola, S., Pasanen, M., Juvonen, R. O. (2009). Acetaminophen bioactivation by human cytochrome P450 enzymes and animal microsomes. Xenobiotica 39:11–21.
  • Lee-Robichaud, P., Akhtar, M. E., Akhtar, M. (1998). An analysis of the role of active-site protic residues of cytochrome P450s: mechanistic and mutational studies on 17α-hydroxylase-17,20-lyase (P-45017α also CYP17). Biochem J 330(Pt 2):967–974.
  • Lee, A. J., Cai, M. X., Thomas, P. E., Conney, A. H., Zhu, B. T. (2003). Characterization of the oxidative metabolites of 17β-estradiol and estrone formed by 15 selectively expressed human cytochrome P450 isoforms. Endocrinology 144:3382–3398.
  • Lewis, D. F. (1995). Three-dimensional models of human and other mammalian microsomal P450s constructed from an alignment with P450102 (P450bm3). Xenobiotica 25:333–366.
  • Lewis, D. F. (1999). Homology modelling of human cytochromes P450 involved in xenobiotic metabolism and rationalization of substrate selectivity. Exp Toxicol Pathol 51:369–374.
  • Lewis, D. F., Eddershaw, P. J., Goldfarb, P. S., Tarbit, M. H. (1997). Molecular modelling of cytochrome P450 2D6 (CYP2D6) based on an alignment with CYP102: structural studies on specific CYP2D6 substrate metabolism. Xenobiotica 27:319–339.
  • Li, C., Kuchimanchi, M., Hickman, D., Poppe, L., Hayashi, M., Zhou, Y., et al. (2009). In vitro metabolism of the novel, highly selective oral angiogenesis inhibitor motesanib diphosphate in preclinical species and in humans. Drug Metab Dispos 2009 Apr 16. [Epub ahead of print]
  • Li, X. Q., Bjorkman, A., Andersson, T. B., Ridderstrom, M., Masimirembwa, C. M. (2002). Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther 300:399–407.
  • Li, Y. C., Chiang, C. W., Yeh, H. C., Hsu, P. Y., Whitby, F. G., Wang, L. H., et al. (2008). Structures of prostacyclin synthase and its complexes with substrate analog and inhibitor reveal a ligand-specific heme conformation change. J Biol Chem 283:2917–2926.
  • Lightfoot, T., Ellis, S. W., Mahling, J., Ackland, M. J., Blaney, F. E., Bijloo, G. J., et al. (2000). Regioselective hydroxylation of debrisoquine by cytochrome P450 2D6: implications for active site modelling. Xenobiotica 30:219–233.
  • Lin, L. Y., Di Stefano, E. W., Schmitz, D. A., Hsu, L., Ellis, S. W., Lennard, M. S., et al. (1997). Oxidation of methamphetamine and methylenedioxymethamphetamine by CYP2D6. Drug Metab Dispos 25:1059–1064.
  • Lussenburg, B. M., Keizers, P. H., de Graaf, C., Hidestrand, M., Ingelman-Sundberg, M., Vermeulen, N. P., et al. (2005). The role of phenylalanine 483 in cytochrome P450 2D6 is strongly substrate dependent. Biochem Pharmacol 70:1253–1261.
  • Mackman, R., Tschirret-Guth, R. A., Smith, G., Hayhurst, G. P., Ellis, S. W., Lennard, M. S., et al. (1996). Active-site topologies of human CYP2D6 and its aspartate-301 → glutamate, asparagine, and glycine mutants. Arch Biochem Biophys 331:134–140.
  • Madeira, M., Levine, M., Chang, T. K., Mirfazaelian, A., Bellward, G. D. (2004). The effect of cimetidine on dextromethorphan O-demethylase activity of human liver microsomes and recombinant CYP2D6. Drug Metab Dispos 32:460–467.
  • Manyike, P. T., Kharasch, E. D., Kalhorn, T. F., Slattery, J. T. (2000). Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther 67:275–282.
  • Marechal, J. D., Kemp, C. A., Roberts, G. C., Paine, M. J., Wolf, C. R., et al. (2008). Insights into drug metabolism by cytochromes P450 from modelling studies of CYP2D6-drug interactions. Br J Pharmacol 153(Suppl 1):S82–S89.
  • Marez, D., Legrand, M., Sabbagh, N., Guidice, J. M., Spire, C., Lafitte, J. J., et al. (1997). Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies, and evolution. Pharmacogenetics 7:193–202.
  • Marez, D., Legrand, M., Sabbagh, N., Lo-Guidice, J. M., Boone, P., Broly, F. (1996). An additional allelic variant of the CYP2D6 gene causing impaired metabolism of sparteine. Hum Genet 97:668–670.
  • Marez, D., Sabbagh, N., Legrand, M., Lo-Guidice, J. M., Boone, P., Broly, F. (1995). A novel CYP2D6 allele with an abolished splice recognition site associated with the poor metabolizer phenotype. Pharmacogenetics 5:305–311.
  • Martinez, C., Albet, C., Agundez, J. A., Herrero, E., Carrillo, J. A., Marquez, M., et al. (1999). Comparative in vitro and in vivo inhibition of cytochrome P450 CYP1A2, CYP2D6, and CYP3A by H2-receptor antagonists. Clin Pharmacol Ther 65:369–376.
  • Masimirembwa, C., Persson, I., Bertilsson, L., Hasler, J., Ingelman-Sundberg, M. (1996). A novel mutant variant of the CYP2D6 gene (CYP2D6*17) common in a black African population: association with diminished debrisoquine hydroxylase activity. Br J Clin Pharmacol 42:713–719.
  • Mast, N., White, M. A., Bjorkhem, I., Johnson, E. F., Stout, C. D., Pikuleva, I. A. (2008). Crystal structures of substrate-bound and substrate-free cytochrome P450 46A1, the principal cholesterol hydroxylase in the brain. Proc Natl Acad Sci U S A 105:9546–9551.
  • Masuda, K., Tamagake, K., Katsu, T., Torigoe, F., Saito, K., Hanioka, N., et al. (2006). Roles of phenylalanine at position 120 and glutamic acid at position 222 in the oxidation of chiral substrates by cytochrome P450 2D6. Chirality 18:167–176.
  • Masuda, K., Tamagake, K., Okuda, Y., Torigoe, F., Tsuzuki, D., Isobe, T., et al. (2005). Change in enantioselectivity in bufuralol 1”-hydroxylation by the substitution of phenylalanine-120 by alanine in cytochrome P450 2D6. Chirality 17:37–43.
  • Matsumoto, S., Yamazoe, Y. (2001). Involvement of multiple human cytochromes P450 in the liver microsomal metabolism of astemizole and a comparison with terfenadine. Br J Clin Pharmacol 51:133–142.
  • Matsunaga, M., Yamazaki, H., Kiyotani, K., Iwano, S., Saruwatari, J., Nakagawa, K., et al. (2009). Two novel CYP2D6*10 haplotypes as possible causes of a poor metabolic phenotype in Japanese. Drug Metab Dispos 37:699–701.
  • Maurer, H. H., Kraemer, T., Springer, D., Staack, R. F. (2004). Chemistry, pharmacology, toxicology, and hepatic metabolism of designer drugs of the amphetamine (ecstasy), piperazine, and pyrrolidinophenone types: a synopsis. Ther Drug Monit 26:127–131.
  • Mautz, D. S., Nelson, W. L., Shen, D. D. (1995). Regioselective and stereoselective oxidation of metoprolol and bufuralol catalyzed by microsomes containing cDNA-expressed human P450 2D6. Drug Metab Dispos 23:513–517.
  • McLaughlin, L. A., Paine, M. J., Kemp, C. A., Marechal, J. D., Flanagan, J. U., Ward, C. J., et al. (2005). Why is quinidine an inhibitor of cytochrome P450 2D6? The role of key active-site residues in quinidine binding. J Biol Chem 280:38617–38624.
  • McMasters, D. R., Torres, R. A., Crathern, S. J., Dooney, D. L., Nachbar, R. B., Sheridan, R. P., et al. (2007). Inhibition of recombinant cytochrome P450 isoforms 2D6 and 2C9 by diverse drug-like molecules. J Med Chem 50:3205–3213.
  • Melet, A., Assrir, N., Jean, P., Pilar Lopez-Garcia, M., Marques-Soares, C., Jaouen, M., et al. (2003). Substrate selectivity of human cytochrome P450 2C9: importance of residues 476, 365, and 114 in recognition of diclofenac and sulfaphenazole and in mechanism- based inactivation by tienilic acid. Arch Biochem Biophys 409:80–91.
  • Mensah-Nyagan, A. G., Do-Rego, J. L., Beaujean, D., Luu-The, V., Pelletier, G., Vaudry, H. (1999). Neurosteroids: expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system. Pharmacol Rev 51:63–81.
  • Mestres, J. (2005). Structure conservation in cytochromes P450. Proteins 58:596–609.
  • Meyer, M. R., Peters, F. T., Maurer, H. H. (2009a). The role of human hepatic cytochrome P450 isozymes in the metabolism of racemic 3,4-methylenedioxyethylamphetamine and its single enantiomers. Drug Metab Dispos 37:1152–1156.
  • Meyer, M. R., Peters, F. T., Maurer, H. H. (2009b). The role of human hepatic cytochrome P450 isozymes in the metabolism of racemic MDEA and its single enantiomers. Drug Metab Dispos 37:1152–1156.
  • Meyer, U. A., Gut, J., Kronbach, T., Skoda, C., Meier, U. T., Catin, T., et al. (1986). The molecular mechanisms of two common polymorphisms of drug oxidation—evidence for functional changes in cytochrome P450 isozymes catalysing bufuralol and mephenytoin oxidation. Xenobiotica 16:449–464.
  • Michalets, E. L. (1998). Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy 18:84–112.
  • Mitchell, E. A., Herd, M. B., Gunn, B. G., Lambert, J. J., Belelli, D. (2008). Neurosteroid modulation of GABAA receptors: molecular determinants and significance in health and disease. Neurochem Int 52:588–595.
  • Miyakawa, H., Kikazawa, E., Abe, K., Kikuchi, K., Fujikawa, H., Matsushita, M., et al. (1999). Detection of anti-LKM-1(anti-CYP2D6) by an enzyme-linked immunosorbent assay in adult patients with chronic liver diseases. Autoimmunity 30:107–114.
  • Miyakawa, H., Matsushima, H., Narita, Y., Hankins, R. W., Kitazawa, E., Fujikawa, H., et al. (1998). Differences in antigenic sites, recognized by anti-liver-kidney microsome-1 (LKM-1) autoantibody, between HCV-positive and HCV-negative sera in Japanese patients. J Gastroenterol 33:529–535.
  • Modi, S., Gilham, D. E., Sutcliffe, M. J., Lian, L. Y., Primrose, W. U., Wolf, C. R., et al. (1997). 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine as a substrate of cytochrome P450 2D6: allosteric effects of NADPH-cytochrome P450 reductase. Biochemistry 36:4461–4470.
  • Modi, S., Paine, M. J., Sutcliffe, M. J., Lian, L. Y., Primrose, W. U., Wolf, C. R., et al. (1996). A model for human cytochrome P450 2D6 based on homology modeling and NMR studies of substrate binding. Biochemistry 35:4540–4550.
  • Molden, E., Asberg, A., Christensen, H. (2002). Desacetyl-diltiazem displays severalfold higher affinity to CYP2D6 compared with CYP3A4. Drug Metab Dispos 30:1–3.
  • Mosher, C. M., Hummel, M. A., Tracy, T. S., Rettie, A. E. (2008). Functional analysis of phenylalanine residues in the active site of cytochrome P450 2C9. Biochemistry 47:11725–11734.
  • Nagano, S., Poulos, T. L. (2005). Crystallographic study on the dioxygen complex of wild-type and mutant cytochrome P450cam. Implications for the dioxygen activation mechanism. J Biol Chem 280:31659–31663.
  • Nakajima, M., Inoue, T., Shimada, N., Tokudome, S., Yamamoto, T., Kuroiwa, Y. (1998). Cytochrome P450 2C9 catalyzes indomethacin O-demethylation in human liver microsomes. Drug Metab Dispos 26:261–266.
  • Nakajima, M., Nakamura, S., Tokudome, S., Shimada, N., Yamazaki, H., Yokoi, T. (1999). Azelastine N-demethylation by CYP3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos 27:1381–1391.
  • Nakamura, K., Yokoi, T., Inoue, K., Shimada, N., Ohashi, N., Kume, T., et al. (1996). CYP2D6 is the principal cytochrome P450 responsible for metabolism of the histamine H1 antagonist promethazine in human liver microsomes. Pharmacogenetics 6:449–457.
  • Nakamura, K., Yokoi, T., Kodama, T., Inoue, K., Nagashima, K., Shimada, N., et al. (1998). Oxidation of histamine H1 antagonist mequitazine is catalyzed by cytochrome P450 2D6 in human liver microsomes. J Pharmacol Exp Ther 284:437–442.
  • Narimatsu, S., Kato, R., Horie, T., Ono, S., Tsutsui, M., Yabusaki, Y., et al. (1999). Enantioselectivity of bunitrolol 4-hydroxylation is reversed by the change of an amino-acid residue from valine to methionine at position 374 of cytochrome P450 2D6. Chirality 11:1–9.
  • Niwa, T., Yabusaki, Y., Honma, K., Matsuo, N., Tatsuta, K., Ishibashi, F., et al. (1998). Contribution of human hepatic cytochrome P450 isoforms to regioselective hydroxylation of steroid hormones. Xenobiotica 28:539–547.
  • Oates, N. S., Shah, R. R., Idle, J. R., Smith, R. L. (1982). Genetic polymorphism of phenformin 4-hydroxylation. Clin Pharmacol Ther 32:81–89.
  • Obach, R. S. (2000). Inhibition of human cytochrome P450 enzymes by constituents of St. John’s wort, an herbal preparation used in the treatment of depression. J Pharmacol Exp Ther 294:88–95.
  • Obach, R. S., Pablo, J., Mash, D. C. (1998). Cytochrome P450 2D6 catalyzes the O-demethylation of the psychoactive alkaloid ibogaine to 12-hydroxyibogamine. Drug Metab Dispos 26:764–768.
  • Oezguen, N., Kumar, S., Hindupur, A., Braun, W., Muralidhara, B. K., Halpert, J. R. (2008). Identification and analysis of conserved sequence motifs in cytochrome P450 family 2. Functional and structural role of a motif 187RFDYKD192 in CYP2B enzymes. J Biol Chem 283:21808–21816.
  • Ohta, S., Tachikawa, O., Makino, Y., Tasaki, Y., Hirobe, M. (1990). Metabolism and brain accumulation of tetrahydroisoquinoline (TIQ), a possible Parkinsonism-inducing substance, in an animal model of a poor debrisoquine metabolizer. Life Sci 46:599–605.
  • Ohyama, K., Nakajima, M., Suzuki, M., Shimada, N., Yamazaki, H., Yokoi, T. (2000). Inhibitory effects of amiodarone and its N-deethylated metabolite on human cytochrome P450 activities: prediction of in vivo drug interactions. Br J Clin Pharmacol 49:244–253.
  • Onderwater, R. C., Venhorst, J., Commandeur, J. N., Vermeulen, N. P. (1999). Design, synthesis, and characterization of 7-methoxy-4-(aminomethyl)coumarin as a novel and selective cytochrome P450 2D6 substrate suitable for high-throughput screening. Chem Res Toxicol 12:555–559.
  • Oscarson, M., Hidestrand, M., Johansson, I., Ingelman-Sundberg, M. (1997). A combination of mutations in the CYP2D6*17 (CYP2D6Z) allele causes alterations in enzyme function. Mol Pharmacol 52:1034–1040.
  • Otton, S. V., Crewe, H. K., Lennard, M. S., Tucker, G. T., Woods, H. F. (1988). Use of quinidine inhibition to define the role of the sparteine/debrisoquine cytochrome P450 in metoprolol oxidation by human liver microsomes. J Pharmacol Exp Ther 247:242–247.
  • Paine, M. J., McLaughlin, L. A., Flanagan, J. U., Kemp, C. A., Sutcliffe, M. J., Roberts, G. C., et al. (2003). Residues glutamate 216 and aspartate 301 are key determinants of substrate specificity and product regioselectivity in cytochrome P450 2D6. J Biol Chem 278:4021–4027.
  • Peters, F. T., Meyer, M. R., Theobald, D. S., Maurer, H. H. (2008). Identification of cytochrome P450 enzymes involved in the metabolism of the new designer drug 4’-methyl-α-pyrrolidinobutyrophenone. Drug Metab Dispos 36:163–168.
  • Porubsky, P. R., Meneely, K. M., Scott, E. E. (2008). Structures of human cytochrome P-450 2E1. Insights into the binding of inhibitors and both small-molecular-weight and fatty-acid substrates. J Biol Chem 283:33698–33707.
  • Postlind, H., Danielson, A., Lindgren, A., Andersson, S. H. (1998). Tolterodine, a new muscarinic receptor antagonist, is metabolized by cytochromes P450 2D6 and 3A in human liver microsomes. Drug Metab Dispos 26:289–293.
  • Potter, W. Z., Davis, D. C., Mitchell, J. R., Jollow, D. J., Gillette, J. R., Brodie, B. B. (1973). Acetaminophen-induced hepatic necrosis. 3. Cytochrome P-450-mediated covalent binding in vitro. J Pharmacol Exp Ther 187:203–210.
  • Poulos, T. L., Finzel, B. C., Gunsalus, I. C., Wagner, G. C., Kraut, J. (1985). The 2.6-å crystal structure of Pseudomonas putida cytochrome P450. J Biol Chem 260:16122–16130.
  • Prakash, C., Johnson, K. A., Gardner, M. J. (2008). Disposition of lasofoxifene, a next-generation selective estrogen receptor modulator, in healthy male subjects. Drug Metab Dispos 36:1218–1226.
  • Projean, D., Baune, B., Farinotti, R., Flinois, J. P., Beaune, P., Taburet, A. M., et al. (2003). In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab Dispos 31:748–754.
  • Raag, R., Martinis, S. A., Sligar, S. G., Poulos, T. L. (1991). Crystal structure of the cytochrome P450CAM active-site mutant, Thr252Ala. Biochemistry 30:11420–11429.
  • Raimundo, S., Fischer, J., Eichelbaum, M., Griese, E. U., Schwab, M., Zanger, U. M. (2000). Elucidation of the genetic basis of the common “intermediate metabolizer” phenotype for drug oxidation by CYP2D6. Pharmacogenetics 10:577–581.
  • Raimundo, S., Toscano, C., Klein, K., Fischer, J., Griese, E. U., Eichelbaum, M., et al. (2004). A novel intronic mutation, 2988G>A, with high predictivity for impaired function of cytochrome P450 2D6 in white subjects. Clin Pharmacol Ther 76:128–138.
  • Ravichandran, K. G., Boddupalli, S. S., Hasermann, C. A., Peterson, J. A., Deisenhofer, J. (1993). Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450s. Science 261:731–736.
  • Rehmel, J. L., Eckstein, J. A., Farid, N. A., Heim, J. B., Kasper, S. C., Kurihara, A., et al. (2006). Interactions of two major metabolites of prasugrel, a thienopyridine antiplatelet agent, with the cytochromes P450. Drug Metab Dispos 34:600–607.
  • Rendic, S. (2002). Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev 34:83–448.
  • Ring, B. J., Gillespie, J. S., Eckstein, J. A., Wrighton, S. A. (2002). Identification of the human cytochromes P450 responsible for atomoxetine metabolism. Drug Metab Dispos 30:319–323.
  • Rowland, P., Blaney, F. E., Smyth, M. G., Jones, J. J., Leydon, V. R., Oxbrow, A. K., et al. (2006). Crystal structure of human cytochrome P450 2D6. J Biol Chem 281:7614–7622.
  • Roy, P. P., Roy, K. (2009). QSAR studies of CYP2D6 inhibitor aryloxypropanolamines using 2D and 3D descriptors. Chem Biol Drug Des 73:442–455.
  • Sachse, C., Brockmoller, J., Bauer, S., Roots, I. (1997). Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 60:284–295.
  • Saito, Y., Hanioka, N., Maekawa, K., Isobe, T., Tsuneto, Y., Nakamura, R., et al. (2005). Functional analysis of three CYP1A2 variants found in a Japanese population. Drug Metab Dispos 33:1905–1910.
  • Sakuyama, K., Sasaki, T., Ujiie, S., Obata, K., Mizugaki, M., Ishikawa, M., et al. (2008). Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A-B, 18, 27, 36, 39, 47–51, 53–55, and 57). Drug Metab Dispos 36:2460–2467.
  • Salva, M., Jansat, J. M., Martinez-Tobed, A., Palacios, J. M. (2003). Identification of the human liver enzymes involved in the metabolism of the antimigraine agent almotriptan. Drug Metab Dispos 31:404–411.
  • Sansen, S., Yano, J. K., Reynald, R. L., Schoch, G. A., Griffin, K. J., Stout, C. D., et al. (2007). Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J Biol Chem 282:14348–14355.
  • Saper, J. R., Silberstein, S. (2006). Pharmacology of dihydroergotamine and evidence for efficacy and safety in migraine. Headache 46(Suppl 4):S171–S181.
  • Schenkman, J. B., Sligar, S. G., Cinti, D. L. (1981). Substrate interaction with cytochrome P450. Pharmacol Ther 12:43–71.
  • Schleinkofer, K., Sudarko, Winn, P. J., Ludemann, S. K., Wade, R. C. (2005). Do mammalian cytochrome P450s show multiple ligand-access pathways and ligand channelling? EMBO Rep 6:584–589.
  • Schlichting, I., Berendzen, J., Chu, K., Stock, A. M., Maves, S. A., Benson, D. E., et al. (2000). The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287:1615–1622.
  • Schoch, G. A., Yano, J. K., Sansen, S., Dansette, P. M., Stout, C. D., Johnson, E. F. (2008). Determinants of cytochrome P450 2C8 substrate binding: structures of complexes with montelukast, troglitazone, felodipine, and 9-cis-retinoic acid. J Biol Chem 283:17227–17237.
  • Schoch, G. A., Yano, J. K., Wester, M. R., Griffin, K. J., Stout, C. D., Johnson, E. F. (2004). Structure of human microsomal cytochrome P450 2C8. Evidence for a peripheral fatty-acid binding site. J Biol Chem 279:9497–9503.
  • Schulz-Utermoehl, T., Edwards, R. J., Boobis, A. R. (2000). Affinity and potency of proinhibitory antipeptide antibodies against CYP2D6 is enhanced using cyclic peptides as immunogens. Drug Metab Dispos 28:544–551.
  • Scott, E. E., He, Y. A., Wester, M. R., White, M. A., Chin, C. C., Halpert, J. R., et al. (2003). An open conformation of mammalian cytochrome P450 2B4 at 1.6-å resolution. Proc Natl Acad Sci U S A 100:13196–13201.
  • Scott, E. E., White, M. A., He, Y. A., Johnson, E. F., Stout, C. D., Halpert, J. R. (2004). Structure of mammalian cytochrome P450 2B4 complexed with 4-(4-chlorophenyl)imidazole at 1.9-å resolution: insight into the range of P450 conformations and the coordination of redox partner binding. J Biol Chem 279:27294–27301.
  • Segura, M., Farre, M., Pichini, S., Peiro, A. M., Roset, P. N., Ramirez, A., et al. (2005). Contribution of cytochrome P450 2D6 to 3,4-methylenedioxymethamphetamine disposition in humans: use of paroxetine as a metabolic inhibitor probe. Clin Pharmacokinet 44:649–660.
  • Shah, R. R., Evans, D. A., Oates, N. S., Idle, J. R., Smith, R. L. (1985). The genetic control of phenformin 4-hydroxylation. J Med Genet 22:361–366.
  • Shimizu, T., Sadeque, A. J., Sadeque, G. N., Hatano, M., Fujii-Kuriyama, Y. (1991a). Ligand-binding studies of engineered cytochrome P450d wild-type, proximal mutants, and distal mutants. Biochemistry 30:1490–1496.
  • Shimizu, T., Tateishi, T., Hatano, M., Fujii-Kuriyama, Y. (1991b). Probing the role of lysines and arginines in the catalytic function of cytochrome P450d by site-directed mutagenesis. Interaction with NADPH-cytochrome P450 reductase. J Biol Chem 266:3372–3375.
  • Shin, J. G., Soukhova, N., Flockhart, D. A. (1999). Effect of antipsychotic drugs on human liver cytochrome P450 (CYP) isoforms in vitro: preferential inhibition of CYP2D6. Drug Metab Dispos 27:1078–1084.
  • Smith, B. D., Sanders, J. L., Porubsky, P. R., Lushington, G. H., Stout, C. D., Scott, E. E. (2007). Structure of the human lung cytochrome P450 2A13. J Biol Chem 282:17306–17313.
  • Smith, G., Modi, S., Pillai, I., Lian, L. Y., Sutcliffe, M. J., Pritchard, M. P., et al. (1998). Determinants of the substrate specificity of human cytochrome P450 CYP2D6: design and construction of a mutant with testosterone hydroxylase activity. Biochem J 331(Pt 3):783–792.
  • Snider, N. T., Sikora, M. J., Sridar, C., Feuerstein, T. J., Rae, J. M., Hollenberg, P. F. (2008). The endocannabinoid, anandamide, is a substrate for the human polymorphic cytochrome P450, 2D6. J Pharmacol Exp Ther 327:538–545.
  • Solus, J. F., Arietta, B. J., Harris, J. R., Sexton, D. P., Steward, J. Q., McMunn, C., et al. (2004). Genetic variation in eleven phase I drug metabolism genes in an ethnically diverse population. Pharmacogenomics 5:895–931.
  • Sorensen, L. B., Sorensen, R. N., Miners, J. O., Somogyi, A. A., Grgurinovich, N., Birkett, D. J. (2003). Polymorphic hydroxylation of perhexiline in vitro. Br J Clin Pharmacol 55:635–638.
  • Soyama, A., Kubo, T., Miyajima, A., Saito, Y., Shiseki, K., Komamura, K., et al. (2004). Novel nonsynonymous single-nucleotide polymorphisms in the CYP2D6 gene. Drug Metab Pharmacokinet 19:313–319.
  • Spaldin, V., Madden, S., Pool, W. F., Woolf, T. F., Park, B. K. (1994). The effect of enzyme inhibition on the metabolism and activation of tacrine by human liver microsomes. Br J Clin Pharmacol 38:15–22.
  • Springer, D., Paul, L. D., Staack, R. F., Kraemer, T., Maurer, H. H. (2003a). Identification of cytochrome P450 enzymes involved in the metabolism of 4’-methyl-α-pyrrolidinopropiophenone, a novel scheduled designer drug, in human liver microsomes. Drug Metab Dispos 31:979–982.
  • Springer, D., Peters, F. T., Fritschi, G., Maurer, H. H. (2002). Studies on the metabolism and toxicological detection of the new designer drug 4’-methyl-α-pyrrolidinopropiophenone in urine using gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 773:25–33.
  • Springer, D., Peters, F. T., Fritschi, G., Maurer, H. H. (2003b). New designer drug, 4’-methyl-α-pyrrolidinohexanophenone: studies on its metabolism and toxicological detection in urine using gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 789:79–91.
  • Stearns, V., Johnson, M. D., Rae, J. M., Morocho, A., Novielli, A., Bhargava, P., et al. (2003). Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J Natl Cancer Inst 95:1758–1764.
  • Stegelmeier, B. L., Edgar, J. A., Colegate, S. M., Gardner, D. R., Schoch, T. K., Coulombe, R. A., et al. (1999). Pyrrolizidine alkaloid plants, metabolism, and toxicity. J Nat Tox 8:95–116.
  • Stortelder, A., Keizers, P. H., Oostenbrink, C., De Graaf, C., De Kruijf, P., Vermeulen, N. P., et al. (2006). Binding of 7- methoxy-4-(aminomethyl)-coumarin to wild-type and W128F mutant cytochrome P450 2D6 studied by time-resolved fluorescence spectroscopy. Biochem J 393:635–643.
  • Stresser, D. M., Turner, S. D., Blanchard, A. P., Miller, V. P., Crespi, C. L. (2002). Cytochrome P450 fluorometric substrates: identification of isoform-selective probes for rat CYP2D2 and human CYP3A4. Drug Metab Dispos 30:845–852.
  • Strobl, G. R., von Kruedener, S., Stockigt, J., Guengerich, F. P., Wolff, T. (1993). Development of a pharmacophore for inhibition of human liver cytochrome P450 2D6: molecular modeling and inhibition studies. J Med Chem 36:1136–1145.
  • Strushkevich, N., Usanov, S. A., Plotnikov, A. N., Jones, G., Park, H. W. (2008). Structural analysis of CYP2R1 in complex with vitamin D3. J Mol Biol 380:95–106.
  • Terfloth, L., Bienfait, B., Gasteiger, J. (2007). Ligand-based models for the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates. J Chem Inf Mod 47:1688–1701.
  • Tracy, T. S., Korzekwa, K. R., Gonzalez, F. J., Wainer, I. W. (1999). Cytochrome P450 isoforms involved in metabolism of the enantiomers of verapamil and norverapamil. Br J Clin Pharmacol 47:545–552.
  • Tsutsui, K. (2008). Progesterone biosynthesis and action in the developing neuron. Endocrinology 149:2757–2761.
  • Tsuzuki, D., Hichiya, H., Okuda, Y., Yamamoto, S., Tamagake, K., Shinoda, S., et al. (2003). Alteration in catalytic properties of human CYP2D6 caused by substitution of glycine-42 with arginine, lysine, and glutamic acid. Drug Metab Pharmacokinet 18:79–85.
  • Tsuzuki, D., Takemi, C., Yamamoto, S., Tamagake, K., Imaoka, S., Funae, Y., et al. (2001). Functional evaluation of cytochrome P450 2D6 with Gly42Arg substitution expressed in Saccharomyces cerevisiae. Pharmacogenetics 11:709–718.
  • Turpeinen, M., Hofmann, U., Klein, K., Murdter, T., Schwab, M., Zanger, U. M. (2009). A predominate role of CYP1A2 for the metabolism of nabumetone to the active metabolite, 6- methoxy-2-naphthylacetic acid (6-MNA), in human liver microsomes. Drug Metab Dispos 2009 Feb 9 [Epub ahead of print]
  • Tyndale, R., Aoyama, T., Broly, F., Matsunaga, T., Inaba, T., Kalow, W., et al. (1991). Identification of a new variant CYP2D6 allele lacking the codon encoding Lys-281: possible association with the poor-metabolizer phenotype. Pharmacogenetics 1:26–32.
  • Van, L. M., Hargreaves, J. A., Lennard, M. S., Tucker, G. T., Rostami-Hodjegan, A. (2007). Inactivation of CYP2D6 by methylenedioxymethamphetamine in different recombinant expression systems. Eur J Pharm Sci 32:8–16.
  • Van, L. M., Sarda, S., Hargreaves, J. A., Rostami-Hodjegan, A. (2009). Metabolism of dextrorphan by CYP2D6 in different recombinantly expressed systems and its implications for the in vitro assessment of dextromethorphan metabolism. J Pharm Sci 98:763–771.
  • van Waterschoot, R. A., Keizers, P. H., de Graaf, C., Vermeulen, N. P., Tschirret-Guth, R. A. (2006). Topological role of cytochrome P450 2D6 active-site residues. Arch Biochem Biophys 447:53–58.
  • Vaz, A. D., McGinnity, D. F., Coon, M. J. (1998). Epoxidation of olefins by cytochrome P450: evidence from site-specific mutagenesis for hydroperoxo-iron as an electrophilic oxidant. Proc Natl Acad Sci U S A 95:3555–3560.
  • Vaz, A. D., Pernecky, S. J., Raner, G. M., Coon, M. J. (1996). Peroxo-iron and oxenoid-iron species as alternative oxygenating agents in cytochrome P450-catalyzed reactions: switching by threonine- 302 to alanine mutagenesis of cytochrome P450 2B4. Proc Natl Acad Sci U S A 93:4644–4648.
  • Vaz, R. J., Nayeem, A., Santone, K., Chandrasena, G., Gavai, A. V. (2005). A 3D-QSAR model for CYP2D6 inhibition in the aryloxypropanolamine series. Bioorg Med Chem Lett 15:3816–3820.
  • Venhorst, J., Onderwater, R. C., Meerman, J. H., Commandeur, J. N., Vermeulen, N. P. (2000a). Influence of N-substitution of 7- methoxy-4-(aminomethyl)-coumarin on cytochrome P450 metabolism and selectivity. Drug Metab Dispos 28:1524–1532.
  • Venhorst, J., Onderwater, R. C., Meerman, J. H., Vermeulen, N. P., Commandeur, J. N. (2000b). Evaluation of a novel high-throughput assay for cytochrome P450 2D6 using 7-methoxy-4-(aminomethyl)-coumarin. Eur J Pharm Sci 12:151–158.
  • Venhorst, J., ter Laak, A. M., Commandeur, J. N., Funae, Y., Hiroi, T., Vermeulen, N. P. (2003). Homology modeling of rat and human cytochrome P450 2D (CYP2D) isoforms and computational rationalization of experimental ligand-binding specificities. J Med Chem 46:74–86.
  • Von Moltke, L. L., Greenblatt, D. J., Granda, B. W., Duan, S. X., Grassi, J. M., Venkatakrishnan, K., et al. (1999). Zolpidem metabolism in vitro: responsible cytochromes, chemical inhibitors, and in vivo correlations. Br J Clin Pharmacol 48:89–97.
  • von Wachenfeldt, C., Richardson, T. H., Cosme, J., Johnson, E. F. (1997). Microsomal P450 2C3 is expressed as a soluble dimer in Escherichia coli following modification of its N-terminus. Arch Biochem Biophys 339:107–114.
  • Voorman, R. L., Maio, S. M., Payne, N. A., Zhao, Z., Koeplinger, K. A., Wang, X. (1998). Microsomal metabolism of delavirdine: evidence for mechanism-based inactivation of human cytochrome P450 3A. J Pharmacol Exp Ther 287:381–388.
  • Wang, B., Sanchez, R. I., Franklin, R. B., Evans, D. C., Huskey, S. E. (2004). The involvement of CYP3A4 and CYP2C9 in the metabolism of 17α-ethinylestradiol. Drug Metab Dispos 32:1209–1212.
  • Wang, S. L., Lai, M. D., Huang, J. D. (1999). G169R mutation diminishes the metabolic activity of CYP2D6 in Chinese. Drug Metab Dispos 27:385–388.
  • Ward, S. A., Walle, T., Walle, U. K., Wilkinson, G. R., Branch, R. A. (1989). Propranolol’s metabolism is determined by both mephenytoin and debrisoquin hydroxylase activities. Clin Pharmacol Ther 45:72–79.
  • Warrington, J. S., Shader, R. I., von Moltke, L. L., Greenblatt, D. J. (2000). In vitro biotransformation of sildenafil (Viagra): identification of human cytochromes and potential drug interactions. Drug Metab Dispos 28:392–397.
  • Waxman, D. J., Lapenson, D. P., Aoyama, T., Gelboin, H. V., Gonzalez, F. J., Korzekwa, K. (1991). Steroid hormone hydroxylase specificities of eleven cDNA-expressed human cytochrome P450s. Arch Biochem Biophys 290:160–166.
  • Wen, B., Chen, Y., Fitch, W. L. (2009). Metabolic activation of nevirapine in human liver microsomes: dehydrogenation and inactivation of cytochrome P450 3A4. Drug Metab Dispos 2009 Apr 13 [Epub ahead of print].
  • Wennerholm, A., Johansson, I., Hidestrand, M., Bertilsson, L., Gustafsson, L. L., Ingelman-Sundberg, M. (2001). Characterization of the CYP2D6*29 allele commonly present in a black Tanzanian population causing reduced catalytic activity. Pharmacogenetics 11:417–427.
  • Wester, M. R., Johnson, E. F., Marques-Soares, C., Dansette, P. M., Mansuy, D., Stout, C. D. (2003). Structure of a substrate complex of mammalian cytochrome P450 2C5 at 2.3-å resolution: evidence for multiple substrate binding modes. Biochemistry 42:6370–6379.
  • Wester, M. R., Yano, J. K., Schoch, G. A., Yang, C., Griffin, K. J., Stout, C. D., Johnson, E. F. (2004). The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-å resolution. J Biol Chem 279:35630–35637.
  • Williams, P. A., Cosme, J., Sridhar, V., Johnson, E. F., McRee, D. E. (2000a). Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 5:121–131.
  • Williams, P. A., Cosme, J., Sridhar, V., Johnson, E. F., McRee, D. E. (2000b). Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 5:121–131.
  • Williams, P. A., Cosme, J., Vinkovic, D. M., Ward, A., Angove, H. C., Day, P. J., et al. (2004). Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305:683–686.
  • Williams, P. A., Cosme, J., Ward, A., Angove, H. C., Matak Vinkovic, D., Jhoti, H. (2003). Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424:464–468.
  • Winn, P. J., Ludemann, S. K., Gauges, R., Lounnas, V., Wade, R. C. (2002). Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a novel functional role for a buried arginine. Proc Natl Acad Sci U S A 99:5361–5366.
  • Wolff, T., Distlerath, L. M., Worthington, M. T., Groopman, J. D., Hammons, G. J., Kadlubar, F. F., et al. (1985). Substrate specificity of human liver cytochrome P450 debrisoquine 4-hydroxylase probed using immunochemical inhibition and chemical modeling. Cancer Res 45:2116–2122.
  • Wolff, T., Distlerath, L. M., Worthington, M. T., Guengerich, F. P. (1987). Human liver debrisoquine 4-hydroxylase: test for specificity toward various monooxygenase substrates and model of the active site. Arch Toxicol 60:89–90.
  • Wu, D., Otton, S. V., Inaba, T., Kalow, W., Sellers, E. M. (1997). Interactions of amphetamine analogs with human liver CYP2D6. Biochem Pharmacol 53:1605–1612.
  • Yamakoshi, Y., Kishimoto, T., Sugimura, K., Kawashima, H. (1999). Human prostate CYP3A5: identification of a unique 5’- untranslated sequence and characterization of purified recombinant protein. Biochem Biophys Res Commun 260:676–681.
  • Yamamoto, A. M., Cresteil, D., Boniface, O., Clerc, F. F., Alvarez, F. (1993). Identification and analysis of cytochrome P450 2D6 antigenic sites recognized by anti–liver-kidney microsome type-1 antibodies (LKM1). Eur J Immunol 23:1105–1111.
  • Yamashita, F., Hara, H., Ito, T., Hashida, M. (2008). Novel hierarchical classification and visualization method for multiobjective optimization of drug properties: application to structure-activity relationship analysis of cytochrome P450 metabolism. J Chem Inf Mod 48:364–369.
  • Yamazaki, H., Shimada, T. (1997). Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch Biochem Biophys 346:161–169.
  • Yamazaki, S., Sato, K., Suhara, K., Sakaguchi, M., Mihara, K., Omura, T. (1993). Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P450s. J Biochem 114:652–657.
  • Yano, J. K., Hsu, M. H., Griffin, K. J., Stout, C. D., Johnson, E. F. (2005). Structures of human microsomal cytochrome P450 2A6 complexed with coumarin and methoxsalen. Nat Struct Mol Biol 12:822–823.
  • Yano, J. K., Wester, M. R., Schoch, G. A., Griffin, K. J., Stout, C. D., Johnson, E. F. (2004). The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-å resolution. J Biol Chem 279:38091–38094.
  • Yasuda, S. U., Zannikos, P., Young, A. E., Fried, K. M., Wainer, I. W., Woosley, R. L. (2002). The roles of CYP2D6 and stereoselectivity in the clinical pharmacokinetics of chlorpheniramine. Br J Clin Pharmacol 53:519–525.
  • Yeom, H., Sligar, S. G., Li, H., Poulos, T. L., Fulco, A. J. (1995). The role of Thr268 in oxygen activation of cytochrome P450BM-3. Biochemistry 34:14733–14740.
  • Yoshimoto, K., Echizen, H., Chiba, K., Tani, M., Ishizaki, T. (1995). Identification of human CYP isoforms involved in the metabolism of propranolol enantiomers-N-desisopropylation is mediated mainly by CYP1A2. Br J Clin Pharmacol 39:421–431.
  • Yu, A. M. (2008). Indolealkylamines: biotransformations and potential drug-drug interactions. AAPS J 10:242–253.
  • Yu, A. M., Idle, J. R., Byrd, L. G., Krausz, K. W., Kupfer, A., Gonzalez, F. J. (2003a). Regeneration of serotonin from 5-methoxytryptamine by polymorphic human CYP2D6. Pharmacogenetics 13:173–181.
  • Yu, A. M., Idle, J. R., Herraiz, T., Kupfer, A., Gonzalez, F. J. (2003b). Screening for endogenous substrates reveals that CYP2D6 is a 5-methoxyindolethylamine O-demethylase. Pharmacogenetics 13:307–319.
  • Yu, J., Paine, M. J., Marechal, J. D., Kemp, C. A., Ward, C. J., Brown, S., et al. (2006). In silico prediction of drug binding to CYP2D6: identification of a new metabolite of metoclopramide. Drug Metab Dispos 34:1386–1392.
  • Yumibe, N., Huie, K., Chen, K. J., Clement, R. P., Cayen, M. N. (1995). Identification of human liver cytochrome P450s involved in the microsomal metabolism of the antihistaminic drug loratadine. Int Arch Allergy Immunol 107:420.
  • Yumibe, N., Huie, K., Chen, K. J., Snow, M., Clement, R. P., Cayen, M. N. (1996). Identification of human liver cytochrome P450 enzymes that metabolize the nonsedating antihistamine loratadine. Formation of descarboethoxyloratadine by CYP3A4 and CYP2D6. Biochem Pharmacol 51:165–172.
  • Zhao, Q., Modi, S., Smith, G., Paine, M., McDonagh, P. D., Wolf, C. R., et al. (1999). Crystal structure of the FMN-binding domain of human cytochrome P450 reductase at 1.93-å resolution. Protein Sci 8:298–306.
  • Zhao, Y., White, M. A., Muralidhara, B. K., Sun, L., Halpert, J. R., Stout, C. D. (2006). Structure of microsomal cytochrome P450 2B4 complexed with the antifungal drug bifonazole: insight into P450 conformational plasticity and membrane interaction. J Biol Chem 281:5973–5981.
  • Zhou, L., Erickson, R. R., Hardwick, J. P., Park, S. S., Wrighton, S. A., Holtzman, J. L. (1997). Catalysis of the cysteine conjugation and protein binding of acetaminophen by microsomes from a human lymphoblast line transfected with the cDNAs of various forms of human cytochrome P450. J Pharmacol Exp Ther 281:785–790.
  • Zhou, S., Chan, E., Duan, W., Huang, M., Chen, Y. Z. (2005). Drug bioactivation, covalent binding to target proteins, and toxicity relevance. Drug Metab Rev 37:41–213.
  • Zhou, S. F. (2008). Drugs behave as substrates, inhibitors, and inducers of human cytochrome P450 3A4. Curr Drug Metab 9:310–322.
  • Zhou, S. F. (2009). Polymorphism of human cytochrome P450 2D6 and its clinical significance. Drug Metab Rev 41:89–295.
  • Zhou, S. F., Di, Y. M., Chan, E., Du, Y. M., Chow, V. D., Xue, C. C., et al. (2008). Clinical pharmacogenetics and potential application in personalized medicine. Curr Drug Metab 9:738–784.
  • Zhou, S. F., Liu, J. P., Lai, X. S. (2009). Substrate specificity, inhibitors, and regulation of human cytochrome P450 2D6 and implications in drug development. Curr Med Chem 16:2661–2805.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.