5,672
Views
71
CrossRef citations to date
0
Altmetric
Review Article

Cytochrome P450 structure–function: insights from molecular dynamics simulations

, &
Pages 434-452 | Received 23 Dec 2015, Accepted 12 Apr 2016, Published online: 10 May 2016

References

  • Banci L. (2003). Molecular dynamics simulations of metalloproteins. Curr Opin Chem Biol 7:143–149.
  • Banu H, Renuka N, Vasanthakumar G. (2011). Reduced catalytic activity of human CYP2C9 natural alleles for gliclazide: Molecular dynamics simulation and docking studies. Biochimie 93:1028–1036.
  • Bathelt C, Schmid R, Pleiss J. (2002). Regioselectivity of CYP2B6: Homology modeling, molecular dynamics simulation, docking. J Mol Med 8:327–335.
  • Berka K, Hendrychová T, Anzenbacher P, et al. (2011). Membrane position of ibuprofen agrees with suggested access path entrance to cytochrome P450 2C9 active site. J Phys Chem A 115:11248–11255.
  • Bren U, Oostenbrink C. (2012). Cytochrome P450 3A4 inhibition by ketoconazole: Tackling the problem of ligand cooperativity using molecular dynamics simulations and free-energy calculations. J Chem Inf Model 52:1573–1582.
  • Brooks BR, Brooks CLIII, Mackerell AD, et al. (2009). CHARMM: The biomolecular simulation program. J Comput Chem 30:1545–1614.
  • Case DA, Cheatham TE, Darden T, et al. (2005). The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688.
  • Cojocaru V, Balali-Mood K, Sansom MS, Wade RC. (2011). Structure and dynamics of the membrane-bound cytochrome P450 2C9. PLoS Comput Biol 7:e1002152.
  • Cojocaru V, Winn PJ, Wade RC. (2006). The ins and outs of cytochrome P450s. Biochim Biophys Acta 1770:390–401.
  • Cojocaru V, Winn PJ, Wade RC. (2012). Multiple, ligand-dependent routes from the active site of cytochrome P450 2C9. Curr Drug Metab 13:143–154.
  • Collom SL, Laddusaw RM, Burch AM, et al. (2008). CYP2E1 substrate inhibition. Mechanistic interpretation through an effector site for monocyclic compounds. J Biol Chem 283:3487–3496.
  • Coon MJ. (2005). Cytochrome P450: Nature’s most versatile biological catalyst. Annu Rev Pharmacol Toxicol 45:1–25.
  • Cornell WD, Cieplak P, Bayly CI, et al. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197.
  • Danielson ML, Desai PV, Mohutsky MA, et al. (2011). Potentially increasing the metabolic stability of drug candidates via computational site of metabolism prediction by CYP2C9: The utility of incorporating protein flexibility via an ensemble of structures. Eur J Med Chem 46:3953–3963.
  • Davydov DR, Halpert JR. (2008). Allosteric P450 mechanisms: Multiple binding sites, multiple conformers, or both? Expert Opin Drug Metab Toxicol 4:1523–1535.
  • de Graaf C, Oostenbrink C, Keizers PJ, et al. (2007). Free energies of binding of R- and S-propranolol to wild-type and F483A mutant cytochrome P450 2D6 from molecular dynamics simulations. Eur Biophys J 36:589–599.
  • Dickmann LJ, Rettie AE, Kneller MB, et al. (2001). Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. Mol Pharmacol 60:382–387.
  • Ekroos M, Sjögren T. (2006). Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci USA 103:13682–13687.
  • Fan H, Mark AE. (2004). Refinement of homology-based protein structures by molecular dynamics simulation techniques. Protein Sci 13:211–220.
  • Fishelovitch D, Hazan C, Shaik S, et al. (2007). Structural dynamics of the cooperative binding of organic molecules in the human cytochrome P450 3A4. J Am Chem Soc 129:1602–1611.
  • Galetin A, Clarke SE, Houston JB. (2002). Quinidine and haloperidol as modifiers of CYP3A4 activity: Multisite kinetic model approach. Drug Metab Dispos 30:1512–1522.
  • Galetin A, Clarke SE, Houston JB. (2003). Multisite kinetic analysis of interactions between prototypical CYP3A4 subgroup substrates: Midazolam, testosterone, and nifedipine. Drug Metab Dispos 31:1108–1116.
  • Gay SC, Sun L, Maekawa K, et al. (2009). Crystal structures of cytochrome P450 2B4 in complex with the inhibitor 1-biphenyl-4-methyl-1h-imidazole: Ligand-induced structural response through alpha-helical repositioning. Biochemistry 48:4762–4771.
  • Gotoh O. (1992). Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 267:83–90.
  • Guengerich FP. (2001). Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14:611–650.
  • Guengerich FP. (2008). Cytochrome P450 and chemical toxicology. Chem Res Toxicol 21:70–83.
  • Harrelson JP, Atkins WM, Nelson SD. (2008). Multiple-ligand binding in CYP2A6: Probing mechanisms of cytochrome P450 cooperativity by assessing substrate dynamics. Biochemistry 47:2978–2988.
  • Hartman JH, Boysen G, Miller GP. (2012). CYP2E1 metabolism of styrene involves allostery. Drug Metab Dispos 40:1976–1983.
  • Hartman JH, Bradley AM, Laddusaw RM, et al. (2013). Structure of pyrazole derivatives impact their affinity, stoichiometry, and cooperative interactions for CYP2E1 complexes. Arch Biochem Biophys 537:12–20.
  • Hartman JH, Knott K, Miller GP. (2014). CYP2E1 hydroxylation of aniline involves negative cooperativity. Biochem Pharmacol 87:523–533.
  • Hartman JH, Letzig LG, Roberts DW, et al. (2015). Cooperativity in CYP2E1 metabolism of acetaminophen and styrene mixtures. Biochem Pharmacol 97:341–349.
  • He L, He F, Bi H, et al. (2010). Isoform-selective inhibition of chrysin towards human cytochrome P450 1A2. Kinetics analysis, molecular docking, and molecular dynamics simulations. Bioorg Med Chem Lett 20:6008–6012.
  • Hendrychová T, Anzenbacherová E, Hudeček J, et al. (2011). Flexibility of human cytochrome P450 enzymes: Molecular dynamics and spectroscopy reveal important function-related variations. Biochim Biophys Acta 1814:58–68.
  • Hendrychová T, Berka K, Navratilova V, et al. (2012). Dynamics and hydration of the active sites of mammalian cytochromes P450 probed by molecular dynamics simulations. Curr Drug Metab 13:177–189.
  • Honda M, Muroi Y, Tamaki Y, et al. (2011). Functional characterization of CYP2B6 allelic variants in demethylation of antimalarial artemether. Drug Metab Dispos 39:1860–1865.
  • Hritz J, de Ruiter A, Oostenbrink C. (2008). Impact of plasticity and flexibility on docking results for cytochrome P450 2D6: A combined approach of molecular dynamics and ligand docking. J Med Chem 51:7469–7477.
  • Hummel MA, Locuson CW, Gannett PM, et al. (2005). CYP2C9 genotype-dependent effects on in vitro drug-drug interactions: Switching of benzbromarone effect from inhibition to activation in the CYP2C9.3 variant. Mol Pharmacol 68:644–651.
  • Hutzler JM, Hauer MJ, Tracy TS. (2001). Dapsone activation of CYP2C9-mediated metabolism: Evidence for activation of multiple substrates and a two-site model. Drug Metab Dispos 29:1029–1034.
  • Hutzler JM, Tracy TS. (2002). Atypical kinetic profiles in drug metabolism reactions. Drug Metab Dispos 30:355–362.
  • Ito Y, Kondo H, Goldfarb PS, et al. (2008). Analysis of CYP2D6 substrate interactions by computational methods. J Mol Graph Model 26:947–956.
  • Johnson EF, Stout CD. (2013). Structural diversity of eukaryotic membrane cytochrome P450s. J Biol Chem 288:17082–17090.
  • Karplus M, McCammon JA. (2002). Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652.
  • Keizers PHJ, de Graaf C, de Kanter FJJ, et al. (2005). Metabolic regio- and stereoselectivity of cytochrome P450 2D6 towards 3,4-methylenedioxy-n-alkylamphetamines: In silico predictions and experimental validation. J Med Chem 48:6117–6127.
  • Kenworthy KE, Clarke SE, Andrews J, et al. (2001). Multisite kinetic models for CYP3A4: Simultaneous activation and inhibition of diazepam and testosterone metabolism. Drug Metab Dispos 29:1644–1651.
  • Khan KK, He YQ, Domanski TL, Halpert JR. (2002). Midazolam oxidation by cytochrome P450 3A4 and active-site mutants: An evaluation of multiple binding sites and of the metabolic pathway that leads to enzyme inactivation. Mol Pharmacol 61:495–506.
  • Kingsley LJ, Lill MA. (2014a). Including ligand-induced protein flexibility into protein tunnel prediction. J Comput Chem 35:1748–1756.
  • Kingsley LJ, Lill MA. (2014b). Ensemble generation and the influence of protein flexibility on geometric tunnel prediction in cytochrome P450 enzymes. PLoS One 9:e99408.
  • Kobayashi K, Takahashi O, Hiratsuka M, et al. (2014). Evaluation of influence of single nucleotide polymorphisms in cytochrome P450 2B6 on substrate recognition using computational docking and molecular dynamics simulation. PLoS One 9:e96789.
  • Kumar GN, Surapaneni S. (2001). Role of drug metabolism in drug discovery and development. Med Res Rev 21:397–411.
  • Lertkiatmongkol P, Assawamakin A, White G, et al. (2013). Distal effect of amino acid substitutions in CYP2C9 polymorphic variants causes differences in interatomic interactions against (S)-warfarin. PLoS One 8:e74053.
  • Levy JW, Hartman JH, Perry MD Jr, et al. (2015). Structural basis for cooperative binding of azoles to CYP2E1 as interpreted through guided molecular dynamics simulations. J Mol Graph Model 56:43–52.
  • Lewis BC, Mackenzie PI, Miners JO. (2011). Application of homology modeling to generate CYP1A1 mutants with enhanced activation of the cancer chemotherapeutic prodrug dacarbazine. Mol Pharmacol 80:879–888.
  • Li J, Wei D-Q, Wang J-F, et al. (2011). A negative cooperativity mechanism of human CYP2E1 inferred from molecular dynamics simulations and free energy calculations. J Chem Inf Model 51:3217–3225.
  • Li W, Liu H, Luo X, et al. (2007). Possible pathway(s) of metyrapone egress from the active site of cytochrome P450 3A4: A molecular dynamics simulation. Drug Metab Dispos 35:689–696.
  • Li W, Liu H, Scott EE, et al. (2005). Possible pathway(s) of testosterone egress from the active site of cytochrome P450 2B1: A steered molecular dynamics simulation. Drug Metab Dispos 33:910–919.
  • Lin JH, Lu AYH. (1997). Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev 49:403–449.
  • Lonsdale R, Houghton KT, Żurek J, et al. (2013). Quantum mechanics/molecular mechanics modeling of regioselectivity of drug metabolism in cytochrome P450 2C9. J Am Chem Soc 135:8001–8015.
  • Lu P, Rodrigues AD, Rushmore TH, et al. (2001). Testosterone, 7-benzyloxyquinoline, and 7-benzyloxy-4-trifluoromethyl-coumarin bind to different domains within the active site of cytochrome P450 3A4. Drug Metab Dispos 29:1473–1479.
  • Lüdemann SK, Carugo O, Wade RC. (1997). Substrate access to cytochrome P450cam: A comparison of a thermal motion pathway analysis with molecular dynamics simulation data. J Mol Med 3:369–374.
  • Lüdemann SK, Lounnas V, Wade RC. (2000a). How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J Mol Biol 303:797–811.
  • Lüdemann SK, Lounnas V, Wade RC. (2000b). How do substrates enter and products exit the buried active site of cytochrome P450cam? 2. Steered molecular dynamics and adiabatic mapping of substrate pathways. J Mol Biol 303:813–830.
  • Lussenburg BM, Keizers PH, de Graaf C, et al. (2005). The role of phenylalanine 483 in cytochrome P450 2D6 is strongly substrate dependent. Biochem Pharmacol 70:1253–1261.
  • MacKerell AD, Bashford D, Bellott M, et al. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616.
  • Miners JO, Birkett DJ. (1998). Cytochrome P4502C9: An enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 45:525–538.
  • Mo SL, Liu YH, Duan W, et al. (2009). Substrate specificity, regulation, and polymorphism of human cytochrome P450 2B6. Curr Drug Metab 10:730–753.
  • Mortier J, Rakers C, Bermudez M, et al. (2015). The impact of molecular dynamics on drug design: Applications for the characterization of ligand–macromolecule complexes. Drug Discov Today 20:686–702.
  • Müller CS, Knehans T, Davydov DR, et al. (2015). Concurrent cooperativity and substrate inhibition in the epoxidation of carbamazepine by cytochrome P450 3A4 active site mutants inspired by molecular dynamics simulations. Biochemistry 54:711–721.
  • Munro AW, Girvan HM, Mason AE, et al. (2013). What makes a P450 tick? Trends Biochem Sci 38:140–150.
  • Murayama N, Soyama A, Saito Y, et al. (2004). Six novel nonsynonymous CYP1A2 gene polymorphisms: Catalytic activities of the naturally occurring variant enzymes. J Pharmacol Exp Ther 308:300–306.
  • Nair PC, Malde AK, Drinkwater N, et al. (2012). Missing fragments: Detecting cooperative binding in fragment-based drug design. ACS Med Chem Lett 3:322–326.
  • Nair PC, Malde AK, Mark AE. (2011). Using theory to reconcile experiment: The structural and thermodynamic basis of ligand recognition by phenylethanolamine N-methyltransferase (PNMT). J Chem Theory Comput 7:1458–1468.
  • Nair PC, Miners JO. (2014). Molecular dynamics simulations: From structure function relationships to drug discovery. In Silico Pharmacol 2:4.
  • Nelson DR. (2009). The cytochrome P450 homepage. Hum Genomics 4:59–65.
  • Oostenbrink C, Villa A, Mark AE, et al. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676.
  • Phillips JC, Braun R, Wang W, et al. (2005). Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802.
  • Porubsky PR, Battaile KP, Scott EE. (2010). Human cytochrome P450 2E1 structures with fatty acid analogs reveal a previously unobserved binding mode. J Biol Chem 285:22282–22290.
  • Poulos TL, Finzel BC, Gunsalus IC, et al. (1985). The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. J Biol Chem 30:16122–16130.
  • Purdy MD, Bennett BC, McIntire WE, et al. (2014). Function and dynamics of macromolecular complexes explored by integrative structural and computational biology. Curr Opin Struct Biol 27:38–148.
  • Raucy JL, Allen SW. (2001). Recent advances in P450 research. Pharmacogenomics J 1:178–186.
  • Raval A, Piana S, Eastwood MP, et al. (2012). Refinement of protein structure homology models via long, all-atom molecular dynamics simulations. Proteins 80:2071–2079.
  • Rettie AE, Jones JP. (2005). Clinical and toxicological relevance of CYP2C9: Drug-drug interactions and pharmacogenetics. Annu Rev Pharmacol Toxicol 45:477–494.
  • Rosales-Hernández MC, Mendieta-Wejebe JE, Trujillo-Ferrara JG, et al. (2010). Homology modeling and molecular dynamics of CYP1A1 and CYP2B1 to explore the metabolism of aryl derivatives by docking and experimental assays. Eur J Med Chem 45:4845–4855.
  • Rowland P, Blaney FE, Smyth MG, et al. (2006). Crystal structure of human cytochrome P450 2D6. J Biol Chem 281:7614–7622.
  • Rydberg P, Rod TH, Olsen L, Ryde U. (2007). Dynamics of water molecules in the active-site cavity of human cytochromes P450. J Phys Chem B 111:5445–5457.
  • Sano E, Li W, Yuki H, et al. (2010). Mechanism of the decrease in catalytic activity of human cytochrome P450 2C9 polymorphic variants investigated by computational analysis. J Comput Chem 31:2746–2758.
  • Santos R, Hritz J, Oostenbrink C. (2010). Role of water in molecular docking simulations of cytochrome P450 2D6. J Chem Inf Model 50:146–154.
  • Satoh M, Saburi H, Tanaka T, et al. (2015). Multiple binding modes of a small molecule to human Keap1 revealed by X-ray crystallography and molecular dynamics simulation. FEBS Open Bio 5:557–570.
  • Schames JR, Henchman RH, Siegel JS, et al. (2004). Discovery of a novel binding trench in HIV integrase. J Med Chem 47:1879–1881.
  • Schleinkofer K Sudarko Winn PJ, et al. (2005). Do mammalian cytochrome P450s show multiple ligand access pathways and ligand channelling? EMBO Rep 6:584–589.
  • Scott EE, He YA, Wester MR, et al. (2003). An open conformation of mammalian cytochrome P450 2B4 at 1.6-Å resolution. Proc Natl Acad Sci USA 100:13196–13201.
  • Scott EE, White MA, He YA, et al. (2004). Structure of mammalian cytochrome P450 2B4 complexed with 4-(4-chlorophenyl)imidazole at 1.9-Å resolution: Insight into the range of P450 conformations and the coordination of redox partner binding. J Biol Chem 279:27294–27301.
  • Sevrioukova IF, Poulos TL. (2013). Dissecting cytochrome P450 3A4-ligand interactions using ritonavir analogues. Biochemistry 52:4474–4481.
  • Shah MB, Wilderman PR, Pascual J, et al. (2012). Conformational adaptation of human cytochrome P450 2B6 and rabbit cytochrome P450 2B4 revealed upon binding multiple amlodipine molecules. Biochemistry 51:7225–7238.
  • Shahrokh K, Cheatham TE, Yost GS. (2012). Conformational dynamics of CYP3A4 demonstrate the important role of Arg212 coupled with the opening of ingress, egress and solvent channels to dehydrogenation of 4-hydroxy-tamoxifen. Biochim Biophys Acta 1820:1605–1617.
  • Shao YX, Zhao P, Li Z, et al. (2012). The molecular basis for the inhibition of human cytochrome P450 1A2 by oroxylin and wogonin. Eur Biophys J 41:297–306.
  • Shi R, Li J, Cao X, et al. (2011). Exploration of the binding of proton pump inhibitors to human P450 2C9 based on docking and molecular dynamics simulation. J Mol Model 17:1941–1951.
  • Shou M, Mei Q, Ettore MW, et al. (1999). Sigmoidal kinetic model for two cooperative substrate binding sites in a cytochrome P450 3A4 active site. Biochem J 340:845–853.
  • Sirim D, Widmann M, Wagner F, et al. (2010). Prediction and analysis of the modular structure of cytochrome P450 monooxygenases. BMC Struct Biol 10:34.
  • Spatzenegger M, Liu H, Wang Q, et al. (2003). Analysis of differential substrate selectivities of CYP2B6 and CYP2E1 by site-directed mutagenesis and molecular modeling. J Pharmacol Exp Ther 304:477–487.
  • Sullivan-Klose TH, Ghanayem BI, Bell DA, et al. (1996). The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6:341–349.
  • Summa V, Petrocchi A, Bonelli F, et al. (2008). Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J Med Chem 51:5843–5855.
  • Teixeira VH, Ribeiro V, Martel PJ. (2010). Analysis of binding modes of ligands to multiple conformations of CYP3A4. Biochim Biophys Acta 1804:2036–2045.
  • van der Spoel D, Lindahl E, Hess B, et al. (2005). GROMACS: Fast, flexible, and free. J Comput Chem 26:1701–1718.
  • van Gunsteren WE, Berendsen HJC. (1990). Computer simulation of molecular dynamics: Methodology, applications, and perspectives in chemistry. Angew Chem 29:992–1023.
  • Venkatakrishnan K, von Moltke LL, Greenblatt DJ. (1998). Human cytochromes P450 mediating phenacetin O-deethylation in vitro: Validation of the high affinity component as an index of CYP1A2 activity. J Pharm Sci 87:1502–1507.
  • Veronese ME, Doecke CJ, Mackenzie PI, et al. (1993). Site-directed mutation studies of human liver cytochrome P-450 isoenzymes in the CYP2C subfamily. Biochem J 289:533–538.
  • Wang A, Stout CD, Zhang Q, et al. (2015). Contributions of ionic interactions and protein dynamics to cytochrome P450 2D6 (CYP2D6) substrate and inhibitor binding. J Biol Chem 290:5092–5104.
  • Wei L, Locuson CW, Tracy TS. (2007). Polymorphic variants of CYP2C9: Mechanisms involved in reduced catalytic activity. Mol Pharmacol 72:1280–1288.
  • Wester MR, Yano JK, Schoch GA, et al. (2004). The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-Å resolution. J Biol Chem 279:35630–35637.
  • White RE. (2000). High-throughput screening in drug metabolism and pharmacokinetic support of drug discovery. Annu Rev Pharmacol Toxicol 40:133–157.
  • Wilderman PR, Halpert JR. (2012). Plasticity of CYP2B enzymes: Structural and solution biophysical methods. Curr Drug Metab 13:167–176.
  • Wilderman PR, Shah MB, Liu T, et al. (2010). Plasticity of cytochrome P450 2B4 as investigated by hydrogen-deuterium exchange mass spectrometry and X-ray crystallography. J Biol Chem 285:38602–38611.
  • Williams PA, Cosme J, Sridhar V, et al. (2000). Mammalian microsomal cytochrome P450 monooxygenase: Structural adaptations for membrane binding and functional diversity. Mol Cell 5:121–131.
  • Williams PA, Cosme J, Vinković DM, et al. (2004). Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305:683–686.
  • Williams PA, Cosme J, Ward A, et al. (2003). Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424:464–468.
  • Winn PJ, Lüdemann SK, Gauges R, et al. (2002). Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a novel functional role for a buried arginine. Proc Natl Acad Sci USA 99:5361–5366.
  • Yano JK, Wester MR, Schoch GA, et al. (2004). The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-Å resolution. J Biol Chem 279:38091–38094.
  • Yee A, Semesi A, Garcia M, et al. (2014). Screening proteins for NMR suitability. In: Anderson WF, ed. Structural genomics and drug discovery. Vol. 1140. New York: Springer, 169–178.
  • Yu X, Cojocaru V, Wade RC. (2013). Conformational diversity and ligand tunnels of mammalian cytochrome P450s. Biotechnol Appl Biochem 60:134–145.
  • Yuki H, Honma T, Hata M, et al. (2012). Prediction of sites of metabolism in a substrate molecule, instanced by carbamazepine oxidation by CYP3A4. Bioorg Med Chem 20:775–783.
  • Zanger UM, Klein K, Saussele T, et al. (2007). Polymorphic CYP2B6: Molecular mechanisms and emerging clinical significance. Pharmacogenomics 8:743–759.
  • Zanger UM, Schwab M. (2013). Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–141.
  • Zawaira A, Coulson L, Gallotta M, et al. (2011). On the deduction and analysis of singlet and two-state gating-models from the static structures of mammalian CYP450. J Struct Biol 173:282–293.
  • Zhang T, Liu LA, Lewis DFV, et al. (2011). Long-range effects of a peripheral mutation on the enzymatic activity of cytochrome P450 1A2. J Chem Inf Model 51:1336–1346.
  • Zhao Y, White MA, Muralidhara BK, et al. (2006). Structure of microsomal cytochrome P450 2B4 complexed with the antifungal drug bifonazole: Insight into P450 conformational plasticity and membrane interaction. J Biol Chem 281:5973–5981.
  • Zhou YH, Zheng QC, Li ZS, et al. (2006). On the human CYP2C9*13 variant activity reduction: A molecular dynamics simulation and docking study. Biochimie 88:1457–1465.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.