345
Views
14
CrossRef citations to date
0
Altmetric
Review Article

Raman spectroscopy using plasmonic and carbon-based nanoparticles for cancer detection, diagnosis, and treatment guidance.Part 1: Diagnosis

ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon, ORCID Icon & show all
Pages 212-252 | Received 04 Jan 2017, Accepted 28 Feb 2017, Published online: 15 Jun 2017

References

  • Abramczyk H, Brozek-Pluska B. (2013). Raman imaging in biochemical and biomedical applications. Diagnosis and treatment of breast cancer. Chem Rev 113:5766–5781.
  • Abramczyk H, Brozek-Pluska B. (2016). New look inside human breast ducts with Raman imaging. Raman candidates as diagnostic markers for breast cancer prognosis: Mammaglobin, palmitic acid and sphingomyelin. Anal Chim Acta 909:91–100.
  • Albanese A, Tang PS, Chan WCW. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16.
  • Albrecht MG, Creighton JA. (1977). Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217.
  • Amer MS. (2009). Raman spectroscopy for soft matter applications. Hoboken, NJ: John Wiley & Sons.
  • Andreou C, Kishore SA, Kircher MF. (2015). Surface-enhanced Raman spectroscopy: A new modality for cancer imaging. J Nucl Med 56:1295–1299.
  • Armanios M, Blackburn EH. (2012). The telomere syndromes. Nat Rev Genet 13:693–704.
  • Ashworth TR. (1869). A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J 14:146–149.
  • Austin LA, Osseiran S, Evans CL. (2016). Raman technologies in cancer diagnostics. Analyst 141:476–503.
  • Baker SN, Baker GA. (2010). Luminescent carbon nanodots: Emergent nanolights. Angew Chem Int Ed 49:6726–6744.
  • Bandow S, Takizawa M, Hirahara K, et al. (2001). Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem Phys Lett 337:48–54.
  • Banerjee HN, Banerji A, Banerjee AN, et al. (2015). Deciphering the finger prints of brain cancer glioblastoma multiforme from four different patients by using near infrared Raman spectroscopy. J Cancer Sci Ther 7:44–47.
  • Bantz KC, Meyer AF, Wittenberg NJ, et al. (2011). Recent progress in SERS biosensing. Phys Chem Chem Phys 13:11551–11567.
  • Barhoumi A, Halas NJ. (2011). Detecting chemically modified DNA bases using surface enhanced Raman spectroscopy. J Phys Chem Lett 2:3118–3123.
  • Bergholt MS, Zheng W, Lin K, et al. (2014). Characterizing variability of in vivo Raman spectroscopic properties of different anatomical sites of normal colorectal tissue towards cancer diagnosis at colonoscopy. Anal Chem 87:960–966.
  • Bhana S, Chaffin E, Wang Y, et al. (2014). Capture and detection of cancer cells in whole blood with magnetic-optical nanoovals. Nanomedicine 9:593–606.
  • Bi X, Rexer B, Arteaga CL, et al. (2014). Evaluating HER2 amplification status and acquired drug resistance in breast cancer cells using Raman spectroscopy. J Biomed Opt 19:025001.
  • Bianco A, Kostarelos K, Prato M. (2005). Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679.
  • Bock C, Tomazou EM, Brinkman AB, et al. (2010). Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol 28:1106–1114.
  • Bonifacio A, Cervo S, Sergo V. (2015). Label-free surface-enhanced Raman spectroscopy of biofluids: Fundamental aspects and diagnostic applications. Anal Bioanal Chem 407:8265–8277.
  • Burrows ND, Vartanian AM, Abadeer NS, et al. (2016). Anisotropic nanoparticles and anisotropic surface chemistry. J Phys Chem Lett 7:632–641.
  • Cals F, Bakker Schut TC, Hardillo JA, et al. (2015). Investigation of the potential of Raman spectroscopy for oral cancer detection in surgical margins. Lab Investig 95:1186–1196.
  • Carrouee A, Allard-Vannier E, Meme S, et al. (2015). Sensitive trimodal MRI-SERRS-fluorescence detection of cancer cells with stable magneto-plasmonic nanoprobes. Anal Chem 87:11233–11241.
  • Cervo S, Mansutti E, Del Mistro G, et al. (2015). SERS analysis of serum for detection of early and locally advanced breast cancer. Anal Bioanal Chem 407:7503–7509.
  • Chen Y, Chen G, Feng S, et al. (2012a). Label-free serum ribonucleic acid analysis for colorectal cancer detection by surface-enhanced Raman spectroscopy and multivariate analysis. J Biomed Opt 17:0670031–0670037.
  • Chen Y, Chen G, Zheng X, et al. (2012b). Discrimination of gastric cancer from normal by serum RNA based on surface-enhanced Raman spectroscopy (SERS) and multivariate analysis. Med Phys 39:5664–5668.
  • Chen Y, Zheng X, Chen G, et al. (2012c). Immunoassay for LMP1 in nasopharyngeal tissue based on surface-enhanced Raman scattering. Int J Nanomed 7:73–82.
  • Chen YW, Liu TY, Chen PJ, et al. (2016). A high-sensitivity and low-power theranostic nanosystem for cell SERS imaging and selectively photothermal therapy using anti-EGFR-conjugated reduced graphene oxide/mesoporous silica/AuNPs nanosheets. Small 12:1458–1468.
  • Cheong WF, Prahl SA, Welch AJ. (1990). A review of the optical properties of biological tissues. IEEE J Quant Electron 26:2166–2185.
  • Chon H, Lee S, Yoon SY, et al. (2011). Simultaneous immunoassay for the detection of two lung cancer markers using functionalized SERS nanoprobes. Chem Commun 47:12515–12517.
  • Chung E, Lee J, Yu J, et al. (2014). Use of surface-enhanced Raman scattering to quantify EGFR markers uninhibited by cetuximab antibodies. Biosens Bioelectron 60:358–365.
  • Cialla D, März A, Böhme R, et al. (2012). Surface-enhanced Raman spectroscopy (SERS): Progress and trends. Anal Bioanal Chem 403:27–54.
  • Conde J, Bao C, Cui D, et al. (2014). Antibody–drug gold nanoantennas with Raman spectroscopic fingerprints for in vivo tumour theranostics. J Control Release 183:87–93.
  • Cottat M, D’andrea C, Yasukuni R, et al. (2015). High sensitivity, high selectivity SERS detection of MnSOD using optical nanoantennas functionalized with aptamers. J Phys Chem C 119:15532–15540.
  • Cowcher DP. (2014). The development of enhanced Raman scattering for the trace analysis of biomolecules. Doctor of Philosophy (PhD.). University of Manchester.
  • Creighton JA, Blatchford CG, Albrecht MG. (1979). Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Faraday Trans 2: Mol Chem Phys 75:790–798.
  • Daniel A, Prakasarao A, Dornadula K, Ganesan S. (2016). Polarized Raman spectroscopy unravels the biomolecular structural changes in cervical cancer. Spectrochim Acta A: Mol Biomol Spectrosc 152:58–63.
  • De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. (2013). Carbon nanotubes: Present and future commercial applications. Science 339:535–539.
  • Del Mistro G, Cervo S, Mansutti E, et al. (2015). Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: A preliminary study. Anal Bioanal Chem 407:3271–3275.
  • Delhaye M, Dhamelincourt P. (1975). Raman microprobe and microscope with laser excitation. J Raman Spectrosc 3:33–43.
  • Delpu Y, Cordelier P, Cho WC, Torrisani J. (2013). DNA methylation and cancer diagnosis. Int J Mol Sci 14:15029–15058.
  • Devpura S, Barton KN, Brown SL, et al. (2014). Vision 20/20: The role of Raman spectroscopy in early stage cancer detection and feasibility for application in radiation therapy response assessment. Med Phys 41:050901.
  • Dinish US, Balasundaram G, Chang YT, Olivo M. (2014b). Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. J Biophoton 7:956–965.
  • Dinish US, Balasundaram G, Chang YT, Olivo M. (2014a). Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci Rep 4:4075.
  • Dinish US, Fu CY, Soh KS, et al. (2012). Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens Bioelectron 33:293–298.
  • Domenici F, Bizzarri AR, Cannistraro S. (2011). SERS-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor. Int J Nanomed 6:2033–2042.
  • Domenici F, Bizzarri AR, Cannistraro S. (2012). Surface-enhanced Raman scattering detection of wild-type and mutant p53 proteins at very low concentration in human serum. Anal Bioanal Chem 421:9–15.
  • Draux F, Gobinet C, Sule-Suso J, et al. (2011). Raman imaging of single living cells: Probing effects of non-cytotoxic doses of an anti-cancer drug. Analyst 136:2718–2725.
  • Dresselhaus MS, Jorio A, Hofmann M, et al. (2010a). Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Letters 10:751–758.
  • Dresselhaus MS, Jorio A, Saito R. (2010b). Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu Rev Condens Matter Phys 1:89–108.
  • Eberhardt K, Stiebing C, Matthaus C, et al. (2015). Advantages and limitations of Raman spectroscopy for molecular diagnostics: An update. Expert Rev Mol Diagnost 15:773–787.
  • Eisenberg DTA. (2011). An evolutionary review of human telomere biology: The thrifty telomere hypothesis and notes on potential adaptive paternal effects. Am J Hum Biol 23:149–167.
  • Elshafey R, Siaj M, Tavares AC. (2016). Au nanoparticle decorated graphene nanosheets for electrochemical immunosensing of p53 antibodies for cancer prognosis. Analyst 141:2733–2740.
  • Faraday M. (1857). Experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145–181.
  • Feng S, Chen R, Lin J, et al. (2011a). Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light. Biosens Bioelectron 26:3167–3174.
  • Feng S, Huang S, Lin D, et al. (2015a). Surface-enhanced Raman spectroscopy of saliva proteins for the noninvasive differentiation of benign and malignant breast tumors. Int J Nanomed 10:537–547.
  • Feng S, Li Z, Chen G, et al. (2015b). Ultrasound-mediated method for rapid delivery of nano-particles into cells for intracellular surface-enhanced Raman spectroscopy and cancer cell screening. Nanotechnology 26:065101.
  • Feng S, Lin D, Lin J, et al. (2013). Blood plasma surface-enhanced Raman spectroscopy for non-invasive optical detection of cervical cancer. Analyst 138:3967–3974.
  • Feng S, Pan J, Wu Y, et al. (2011b). Study on gastric cancer blood plasma based on surface-enhanced Raman spectroscopy combined with multivariate analysis. Sci China Life Sci 54:828–834.
  • Feng S, Wang W, Tai IT, et al. (2015c). Label-free surface-enhanced Raman spectroscopy for detection of colorectal cancer and precursor lesions using blood plasma. Biomed Opt Exp 6:3494–3502.
  • Ferrari AC, Basko DM. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246.
  • Ferraro JR, Nakamoto K, Brown CW. (2003). Introductory Raman spectroscopy. 2nd ed. San Diego: Academic Press.
  • Fleischmann M, Hendra PJ, McQuillan AJ. (1974). Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166.
  • Freestone I, Meeks N, Sax M, Higgitt C. (2007). The Lycurgus cup—A roman nanotechnology. Gold Bull 40:270–277.
  • Garai E, Sensarn S, Zavaleta CL, et al. (2015). A real-time clinical endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles. PLoS One 10:e0123185.
  • Garcia MA. (2011). Surface plasmons in metallic nanoparticles: Fundamentals and applications. J Phys D: Appl Phys 44:283001.
  • Ge M, Wei C, Xu M, et al. (2015). Ultra-sensitive magnetic immunoassay of HE4 based on surface enhanced Raman spectroscopy. Anal Methods 7:6489–6495.
  • Gilson TR, Hendra PJ. (1970). Laser Raman spectroscopy: A survey of interest primarily to chemists, and containing a comprehensive discussion of experiments on crystals. Chichester: John Wiley & Sons.
  • Gong T, Kong KV, Goh D, et al. (2015). Sensitive surface enhanced Raman scattering multiplexed detection of matrix metalloproteinase 2 and 7 cancer markers. Biomed Opt Exp 6:2076–2087.
  • Gonzalez-Solis JL, Martinez-Espinosa JC, Torres-Gonzalez LA, et al. (2013). Cervical cancer detection based on serum sample Raman spectroscopy. Lasers Med Sci 29:979–985.
  • Granger JH, Granger MC, Firpo MA, et al. (2013). Toward development of a surface enhanced Raman scattering (SERS) based cancer diagnostic immunoassay panel. Analyst 138:410–416.
  • Guo C, Al-Jamal K, Ali-Boucetta H, et al. (2012). Cell biology of carbon nanotubes. In: Tagmatarchis N, ed. Advances in carbon nanomaterials: Science and applications. Singapore: Pan Stanford Publishing, 343.
  • Guven B, Dudak FC, Boyaci IH, et al. (2014). SERS-based direct and sandwich assay methods for mir-21 detection. Analyst 139:1141–1147.
  • Guze K, Pawluk HC, Short M, et al. (2015). Pilot study: Raman spectroscopy in differentiating premalignant and malignant oral lesions from normal mucosa and benign lesions in humans. Head Neck 37:511–517.
  • Harmsen S, Huang R, Wall MA, et al. (2015). Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci Transl Med 7:271ra7.
  • Harrison BS, Atala A. (2007). Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353.
  • He J, Li G, Hu Y. (2015). Aptamer recognition induced target-bridged strategy for proteins detection based on magnetic chitosan and silver/chitosan nanoparticles using surface-enhanced Raman spectroscopy. Anal Chem 87:11039–11047.
  • Hiura H, Ebbesen TW, Tanigaki K, Takahashi H. (1993). Raman studies of carbon nanotubes. Chem Phys Lett 202:509–512.
  • Hong G, Diao S, Antaris AL, Dai H. (2015). Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 115:10816–10906.
  • Hsu HK, Weng YI, Hsu PY, et al. (2014). Detection of DNA methylation by MeDIP and MBDCap assays: An overview of techniques. Methods Mol Biol 1105:61–70.
  • Hsu JF, Hsieh PY, Hsu HY, Shigeto S. (2015). When cells divide: Label-free multimodal spectral imaging for exploratory molecular investigation of living cells during cytokinesis. Sci Rep 5:17541.
  • Hu C, Liu Y, Qin J, et al. (2013). Fabrication of reduced graphene oxide and sliver nanoparticle hybrids for Raman detection of absorbed folic acid: A potential cancer diagnostic probe. ACS Appl Mater Interfaces 5:4760–4768.
  • Hu C, Shen J, Yan J, et al. (2016). Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: Size-dependent Raman enhancement and applications in cancer cell imaging. Nanoscale 8:2090–2096.
  • Hu J, Zhang CY. (2012). Single base extension reaction-based surface enhanced Raman spectroscopy for DNA methylation assay. Biosens Bioelectron 31:451–457.
  • Huang J, Liu S, Chen Z, et al. (2016). Distinguishing cancerous liver cells using surface-enhanced Raman spectroscopy. Technol Cancer Res Treat 15:36–43.
  • Huang J, Zong C, Shen H, et al. (2012). Mechanism of cellular uptake of graphene oxide studied by surface‐enhanced Raman spectroscopy. Small 8:2577–2584.
  • Iijima S. (1991). Helical microtubules of graphitic carbon. Nature 354:56–58.
  • Iijima S, Yudasaka M, Yamada R, et al. (1999). Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309:165–170.
  • Indrasekara A, Swarnapali DS, Paladini BJ, et al. (2013). Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection. Adv Healthc Mater 2:1370–1376.
  • Ingle T, Dervishi E, Biris AR, et al. (2013). Raman spectroscopy analysis and mapping the biodistribution of inhaled carbon nanotubes in the lungs and blood of mice. J Appl Toxicol 33:1044–1052.
  • Iorio MV, Ferracin M, Liu CG, et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070.
  • Ishigaki M, Maeda Y, Taketani A, et al. (2016). Diagnosis of early-stage esophageal cancer by Raman spectroscopy and chemometric techniques. Analyst 141:1027–1033.
  • Ito H, Hasegawa K, Hasegawa Y, et al. (2015). Silver nanoscale hexagonal column chips for detecting cell-free DNA and circulating nucleosomes in cancer patients. Sci Rep 5:10455.
  • Ito H, Inoue H, Hasegawa K, et al. (2014). Use of surface-enhanced Raman scattering for detection of cancer-related serum-constituents in gastrointestinal cancer patients. Nanomedicine 10:599–608.
  • Janes CH, Lindor KD. (1993). Outcome of patients hospitalized for complications after outpatient liver biopsy. Ann Intern Med 118:96–98.
  • Jeanmaire DL, Van Duyne RP. (1977). Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem 84:1–20.
  • Jermyn M, Mok K, Mercier J, et al. (2015). Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med 7:274ra19.
  • Jiang L, Qian J, Cai F, He S. (2011). Raman reporter-coated gold nanorods and their applications in multimodal optical imaging of cancer cells. Anal Bioanal Chem 400:2793–2800.
  • Jiang L, You T, Yin P, et al. (2013). Surface-enhanced Raman scattering spectra of adsorbates on Cu2O nanospheres: Charge-transfer and electromagnetic enhancement. Nanoscale 5:2784–2789.
  • Johnson JM, Dalton RR, Wester SM, et al. (1999). Histological correlation of microcalcifications in breast biopsy specimens. Arch Surg 134:712–716.
  • Jokerst JV, Cole AJ, Van De Sompel D, Gambhir SS. (2012). Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 6:10366–10377.
  • Jung S, Shuford KL, Park S. (2011). Optical property of a colloidal solution of platinum and palladium nanorods: Localized surface plasmon resonance. J Phys Chem C 115:19049–19053.
  • Kalia M. (2013). Personalized oncology: Recent advances and future challenges. Metabolism 62:S11–S14.
  • Kallaway C, Almond LM, Barr H, et al. (2013). Advances in the clinical application of Raman spectroscopy for cancer diagnostics. Photodiagn Photodyn Ther 10:207–219.
  • Kambhampati P, Child CM, Foster MC, Campion A. (1998). On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory. J Chem Phys 108:5013–5026.
  • Kelemen LE. (2006). The role of folate receptor alpha in cancer development, progression and treatment: Cause, consequence or innocent bystander? Int J Cancer 119:243–250.
  • Kim HI, Hwang D, Jeon SJ, et al. (2015). Orientation and density control of bispecific anti-HER2 antibody on functionalized carbon nanotubes for amplifying effective binding reactivity to cancer cells. Nanoscale 7:6363–6373.
  • Kneipp K, Haka AS, Kneipp H, et al. (2002). Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Appl Spectrosc 56:150–154.
  • Kneipp K, Wang Y, Dasari RR, Feld MS. (1995). Approach to single molecule detection using surface-enhanced resonance Raman scattering (SERRS): A study using Rhodamine 6G on colloidal silver. Appl Spectrosc 49:780–784.
  • Kneipp K, Wang Y, Kneipp H, et al. (1997). Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667.
  • Knight MW, Liu L, Wang Y, et al. (2012). Aluminum plasmonic nanoantennas. Nano Letters 12:6000–6004.
  • Ko J, Lee S, Lee EK, et al. (2013). SERS-based immunoassay of tumor marker VEGF using DNA aptamers and silica-encapsulated hollow gold nanospheres. Phys Chem Chem Phys 15:5379–5385.
  • Kong K, Kendall C, Stone N, Notingher I. (2015). Raman spectroscopy for medical diagnostics – From in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev 89:121–134.
  • Kong RM, Chen Z, Ye M, et al. (2011). Cell-SELEX-based aptamer-conjugated nanomaterials for enhanced targeting of cancer cells. Sci China Chem 54:1218–1226.
  • Kosaka N, Iguchi H, Ochiya T. (2010). Circulating microRNA in body fluid: A new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101:2087–2092.
  • Krasnoslobodtsev AV, Torres MP, Kaur S, et al. (2015). Nano-immunoassay with improved performance for detection of cancer biomarkers. Nanomed: Nanotechnol Biol Med 11:167–173.
  • Kroto HW, Heath JR, O’Brien SC, et al. (1985). C 60: Buckminsterfullerene. Nature 318:162–163.
  • Kuo HF, Huang YJ, Chen YT. (2015). Investigation of various types of nanorods as sensitive surface-enhanced Raman scattering substrates. IEEE Trans Nanobiosci 14:581–590.
  • Lai XF, Zou YX, Wang SS, et al. (2016). Modulating the morphology of gold graphitic nanocapsules for plasmon resonance-enhanced multimodal imaging. Anal Chem 88:5385–5391.
  • Lamprecht C, Gierlinger N, Heister E, et al. (2012). Mapping the intracellular distribution of carbon nanotubes after targeted delivery to carcinoma cells using confocal Raman imaging as a label-free technique. J Phys Condens Matter 24:164206.
  • Lane LA, Qian X, Nie S. (2015). SERS nanoparticles in medicine: From label-free detection to spectroscopic tagging. Chem Rev 115:10489–10529.
  • Latka I, Dochow S, Krafft C, et al. (2013). Fiber optic probes for linear and nonlinear Raman applications – Current trends and future development. Laser Photon Rev 7:698–731.
  • Law B. (1996). Immunoassay: A practical guide. London: Taylor & Francis.
  • Le Ru E, Etchegoin P, Meyer M. (2006). Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. J Chem Phys 125:204701.
  • Le Ru EC, Etchegoin PG. (2009a). Introduction to plasmons and plasmonics. Principles of surface-enhanced Raman spectroscopy and related plasmonic effects. Amsterdam: Elsevier, 121–183.
  • Le Ru E, Etchegoin P. (2009b). Raman spectroscopy and related techniques. Principles of surface-enhanced Raman spectroscopy and related plasmonic effects. Amsterdam: Elsevier, 29–120.
  • Lee EJ, Gusev Y, Jiang J, et al. (2007). Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120:1046–1054.
  • Lee M, Lee K, Kim KH, et al. (2012a). SERS-based immunoassay using a gold array-embedded gradient microfluidic chip. Lab Chip 12:3720–3727.
  • Lee RC, Feinbaum RL, Ambros V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854.
  • Lee S, Chon H, Lee J, et al. (2014). Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging. Biosens Bioelectron 51:238–243.
  • Lee S, Chon H, Yoon SY, et al. (2012b). Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging. Nanoscale 4:124–129.
  • Lewis IR, Edwards H. (2001). Theory of Raman Scattering. Handbook of Raman spectroscopy: From the research laboratory to the process line. Boca Raton (FL): CRC Press.
  • Li D, Zhang Y, Li R, et al. (2015a). Selective capture and quick detection of targeting cells with SERS-coding microsphere suspension chip. Small 11:2200–2208.
  • Li J, Skeete Z, Shan S, et al. (2015b). Surface enhanced Raman scattering detection of cancer biomarkers with bifunctional nanocomposite probes. Anal Chem 87:10698–10702.
  • Li M, Cushing SK, Zhang J, et al. (2013). Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS Nano 7:4967–4976.
  • Li M, Kang JW, Sukumar S, et al. (2015c). Multiplexed detection of serological cancer markers with plasmon-enhanced Raman spectro-immunoassay. Chem Sci 6:3906–3914.
  • Li S, Chen G, Zhang Y, et al. (2014a). Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques. Opt Exp 22:25895–25908.
  • Li S, Li L, Zeng Q, et al. (2015d). Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms. Sci Rep 5:9582.
  • Li X, Yang T, Lin J. (2012). Spectral analysis of human saliva for detection of lung cancer using surface-enhanced Raman spectroscopy. J Biomed Opt 17:037003.
  • Li Y, Qi X, Lei C, et al. (2014b). Simultaneous SERS detection and imaging of two biomarkers on the cancer cell surface by self-assembly of branched DNA-gold nanoaggregates. Chem Commun 50:9907–9909.
  • Liang L, Zheng C, Zhang H, et al. (2014). Exploring type II microcalcifications in benign and premalignant breast lesions by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Spectrochim Acta A: Mol Biomol Spectrosc 132:397–402.
  • Lim L, Nichols B, Migden MR, et al. (2014). Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis. J Biomed Opt 19:117003.
  • Lin D, Feng S, Pan J, et al. (2011). Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis. Opt Exp 19:13565–13577.
  • Lin D, Huang H, Qiu S, et al. (2016). Diagnostic potential of polarized surface enhanced Raman spectroscopy technology for colorectal cancer detection. Opt Exp 24:2222–2234.
  • Lin D, Pan J, Huang H, et al. (2014). Label-free blood plasma test based on surface-enhanced Raman scattering for tumor stages detection in nasopharyngeal cancer. Sci Rep 4:4751.
  • Liu CH, Zhou Y, Sun Y, et al. (2013a). Resonance Raman and Raman spectroscopy for breast cancer detection. Technol Cancer Res Treatment 12:371–382.
  • Liu Q, Wei L, Wang J, et al. (2012a). Cell imaging by graphene oxide based on surface enhanced Raman scattering. Nanoscale 4:7084–7089.
  • Liu Z, Guo Z, Zhong H, et al. (2013b). Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging. Phys Chem Chem Phys 15:2961–2966.
  • Liu Z, Hu C, Li S, et al. (2012b). Rapid intracellular growth of gold nanostructures assisted by functionalized graphene oxide and its application for surface-enhanced Raman spectroscopy. Anal Chem 84:10338–10344.
  • Liz-Marzán LM. (2006). Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41.
  • Lujambio A, Calin GA, Villanueva A, et al. (2008). A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 105:13556–13561.
  • Luo S, Chen C, Mao H, Jin S. (2013). Discrimination of premalignant lesions and cancer tissues from normal gastric tissues using Raman spectroscopy. J Biomed Opt 18:067004.
  • Lyng FM, Traynor D, Ramos IR, et al. (2015). Raman spectroscopy for screening and diagnosis of cervical cancer. Anal Bioanal Chem 407:8279–8289.
  • MacLaughlin CM, Mullaithilaga N, Yang G, et al. (2013a). Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry. Langmuir 29:1908–1919.
  • MacLaughlin CM, Parker EP, Walker GC, Wang C. (2013b). Evaluation of SERS labeling of CD20 on CLL cells using optical microscopy and fluorescence flow cytometry. Nanomedicine 9:55–64.
  • Maeda H, Nakamura H, Fang J. (2013). The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79.
  • Maher RC. (2012). SERS Hot Spots. In: Kumar CSSR, ed. Raman spectroscopy for nanomaterials characterization. Berlin, Heidelberg: Springer Berlin Heidelberg, 215–260.
  • Maiti KK, Dinish US, Samanta A, et al. (2012). Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags. Nano Today 7:85–93.
  • Maiti KK, Samanta A, Vendrell M, et al. (2011). Multiplex cancer cell detection by SERS nanotags with cyanine and triphenylmethine Raman reporters. Chem Commun 47:3514–3516.
  • Mallia RJ, McVeigh PZ, Fisher CJ, et al. (2015). Wide-field multiplexed imaging of EGFR-targeted cancers using topical application of NIR SERS nanoprobes. Nanomedicine 10:89–101.
  • Mallia RJ, McVeigh PZ, Veilleux I, Wilson BC. (2012). Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo. J Biomed Opt 17:076017.
  • Manikandan M, Abdelhamid HN, Talib A, Wu HF. (2014). Facile synthesis of gold nanohexagons on graphene templates in Raman spectroscopy for biosensing cancer and cancer stem cells. Biosens Bioelectron 55:180–186.
  • Marro M, Nieva C, Sanz-Pamplona R, Sierra A. (2014). Molecular monitoring of epithelial-to-mesenchymal transition in breast cancer cells by means of Raman spectroscopy. Biochim Biophys Acta 1843:1785–1795.
  • Mayer KM, Hafner JH. (2011). Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857.
  • McGregor HC, Short MA, McWilliams A, et al. (2016). Real-time endoscopic Raman spectroscopy for in vivo early lung cancer detection. J Biophoton 10:98–110.
  • Mehn D, Morasso C, Vanna R, et al. (2014). Surface enhanced Raman spectroscopy-based method for leukemia biomarker detection using magnetic core @ gold shell nanoparticles. Bionanoscience 4:119–127.
  • Meneghetti M, Scarsi A, Litti L, et al. (2012). Plasmonic nanostructures for SERRS multiplexed identification of tumor-associated antigens. Small 8:3733–3738.
  • Mert S, Özbek E, Ötünçtemur A, Çulha M. (2015). Kidney tumor staging using surface-enhanced Raman scattering. J Biomed Opt 20:047002.
  • Mie G. (1976). Contributions to the optics of turbid media, particularly of colloidal metal solutions. Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann Phys (Leipzig) 25:377–445.
  • Min YK, Naito S, Yamazaki H, et al. (2009). Raman applications in cancer studies. In: Amer M, ed. Raman spectroscopy for soft matter applications. Chichester, England: John Wiley & Sons, 269–290.
  • Mock JJ, Barbic M, Smith DR, et al. (2002). Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759.
  • Modugno G, Ménard‐Moyon C, Prato M, Bianco A. (2015). Carbon nanomaterials combined with metal nanoparticles for theranostic applications. Br J Pharmacol 172:975–991.
  • Moskovits M. (1978). Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys 69:4159–4161.
  • Ng EKO, Chong WWS, Lam EKY, et al. (2009). Differential expression of microRNAs in plasma of colorectal cancer patients: A potential marker for colorectal cancer screening. Gut 58:1375–1381.
  • Nguyen AH, Lee J, Choi HI, et al. (2015). Fabrication of plasmon length-based surface enhanced Raman scattering for multiplex detection on microfluidic device. Biosens Bioelectron 70:358–365.
  • Nie S, Emory SR. (1997). Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106.
  • Nima ZA, Biswas A, Bayer IS, et al. (2014a). Applications of surface-enhanced Raman scattering in advanced bio-medical technologies and diagnostics. Drug Metabol Rev 46:155–175.
  • Nima ZA, Mahmood M, Xu Y, et al. (2014b). Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances. Sci Rep 4:4752.
  • Nima ZA, Mahmood MW, Karmakar A, et al. (2013). Single-walled carbon nanotubes as specific targeting and Raman spectroscopic agents for detection and discrimination of single human breast cancer cells. J Biomed Opt 18:055003.
  • Novoselov KS, Fal VI, Colombo L, et al. (2012). A roadmap for graphene. Nature 490:192–200.
  • Novoselov KS, Geim AK, Morozov SV, et al. (2004). Electric field effect in atomically thin carbon films. Science 306:666–669.
  • Otto A, Timper J, Billmann J, et al. (1980). Surface roughness induced electronic Raman scattering. Surf Sci Lett 92:L55–L57.
  • Paget S. (1889). The distribution of secondary growths in cancer of the breast. Lancet 133:571–573.
  • Pallaoro A, Braun GB, Moskovits M. (2011). Quantitative ratiometric discrimination between noncancerous and cancerous prostate cells based on neuropilin-1 overexpression. Proc Natl Acad Sci USA 108:16559–16564.
  • Pang Y, Wang C, Wang J, et al. (2015). Fe3O4@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells. Biosens Bioelectron 79:574–580.
  • Pantarotto D, Briand JP, Prato M, Bianco A. (2004). Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 16–17. Available from: http://pubs.rsc.org/en/Content/ArticleLanding/2004/CC/b311254c#!divAbstract
  • Pavićević A, Glumac S, Sopta J, et al. (2012). Raman microspectroscopy as a biomarking tool for in vitro diagnosis of cancer: A feasibility study. Croat Med J 53:551.
  • Perumal J, Balasundaram G, Mahyuddin AP, et al. (2015). SERS-based quantitative detection of ovarian cancer prognostic factor haptoglobin. Int J Nanomed 10:1831–1840.
  • Porkka KP, Pfeiffer MJ, Waltering KK, et al. (2007). MicroRNA expression profiling in prostate cancer. Cancer Res 67:6130–6135.
  • Potara M, Boca S, Licarete E, et al. (2013). Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly sensitive plasmonic platforms for intracellular SERS sensing and imaging. Nanoscale 5:6013–6022.
  • Qian J, Jiang L, Cai F, et al. (2011). Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging. Biomaterials 32:1601–1610.
  • Qian X, Peng XH, Ansari DO, et al. (2008). In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90.
  • Qiu S, Xu Y, Huang L, et al. (2016). Non-invasive detection of nasopharyngeal carcinoma using saliva surface-enhanced Raman spectroscopy. Oncol Lett 11:884–890.
  • Raman CV, Krishnan KS. (1928). A new type of secondary radiation. Nature 121:501–502.
  • Ramya AN, Joseph MM, Nair JB, et al. (2016). New insight of tetraphenylethylene-based Raman signatures for targeted SERS nanoprobe construction toward prostate cancer cell detection. ACS Appl Mater Interfaces 8:10220–10225.
  • Ranc V, Srovnal J, Kvitek L, Hajduch M. (2013). Discrimination of circulating tumor cells of breast cancer and colorectal cancer from normal human mononuclear cells using Raman spectroscopy. Analyst 138:5983–5988.
  • Rice KP, Walker EJ, Jr, Stoykovich MP, Saunders AE. (2011). Solvent-dependent surface plasmon response and oxidation of copper nanocrystals. J Phys Chem C 115:1793–1799.
  • Rong Z, Wang C, Wang J, et al. (2016). Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures. Biosens Bioelectron 84:15–21.
  • Sahu A, Nandakumar N, Sawant S, Krishna CM. (2015). Recurrence prediction in oral cancers: A serum Raman spectroscopy study. Analyst 140:2294–2301.
  • Samanta A, Das RK, Park SJ, et al. (2014). Multiplexing SERS nanotags for the imaging of differentiated mouse embryonic stem cells (mESC) and detection of teratoma in vivo. Am J Nucl Med Mol Imag 4:114.
  • Samanta A, Maiti KK, Soh KS, et al. (2011). Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew Chem Int Ed 50:6089–6092.
  • Soares JANT. (2014). Introduction to optical characterization of materials. In: Sardela M, ed. Practical materials characterization. New York: Springer, 557–593.
  • Sarid D, Challener W. (2010). Modern introduction to surface plasmons: Theory, Mathematica modeling, and applications. New York: Cambridge University Press.
  • Schleusener J, Gluszczynska P, Reble C, et al. (2015). In vivo study for the discrimination of cancerous and normal skin using fiber probe based Raman spectroscopy. Exp Dermatol 24:767–772.
  • Schlücker S. (2014). Surface‐enhanced Raman spectroscopy: Concepts and chemical applications. Angew Chem Int Ed 53:4756–4795.
  • Schutz M, Steinigeweg D, Salehi M, et al. (2011). Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy. Chem Commun 47:4216–4218.
  • Sha MY, Xu H, Natan MJ, Cromer R. (2008). Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. J Am Chem Soc 130:17214–17215.
  • Shay JW, Wright WE. (2000). Telomere dynamics in cancer progression and prevention: Fundamental differences in human and mouse telomere biology. Nat Med 6:849–851.
  • Shi M, Zheng J, Liu C, et al. (2015). SERS assay of telomerase activity at single-cell level and colon cancer tissues via quadratic signal amplification. Biosens Bioelectron 77:673–680.
  • Shi W, Paproski RJ, Moore R, Zemp R. (2014). Detection of circulating tumor cells using targeted surface-enhanced Raman scattering nanoparticles and magnetic enrichment. J Biomed Opt 19:056014.
  • Short MA, Wang W, Tai IT, Zeng H. (2016). Development and in vivo testing of a high frequency endoscopic Raman spectroscopy system for potential applications in the detection of early colonic neoplasia. J Biophoton 9:44–48.
  • Shurbaji MS, Kalbfleisch JH, Thurmond TS. (1995). Immunohistochemical detection of p53 protein as a prognostic indicator in prostate cancer. Hum Pathol 26:106–109.
  • Siegel RL, Miller KD, Jemal A. (2015). Cancer statistics, 2015. CA: Cancer J Clin 65:5–29.
  • Smekal A. (1923). Zur Quantentheorie der Dispersion. Naturwissenschaften 11:873–875.
  • Smith E, Dent G. (2013). Modern Raman spectroscopy: A practical approach. Chichester, England: John Wiley & Sons.
  • Song J, Duan B, Wang C, et al. (2014). SERS-encoded nanogapped plasmonic nanoparticles: Growth of metallic nanoshell by templating redox-active polymer brushes. J Am Chem Soc 136:6838–6841.
  • Steichen SD, Caldorera-Moore M, Peppas NA. (2013). A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48:416–427.
  • Sun C, Zhang R, Gao M, Zhang X. (2015). A rapid and simple method for efficient capture and accurate discrimination of circulating tumor cells using aptamer conjugated magnetic beads and surface-enhanced Raman scattering imaging. Anal Bioanal Chem 407:1–10.
  • Sun M, Wang YX, Chen ZN, et al. (2014). Nanostars on a fiber facet with near field enhancement for surface-enhanced Raman scattering detection. Appl Phys A 115:87–91.
  • Sutradhar KB, Amin ML. (2014). Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol 2014:12.
  • Tam NCM, McVeigh PZ, MacDonald TD, et al. (2012). Porphyrin–lipid stabilized gold nanoparticles for surface enhanced Raman scattering based imaging. Bioconjug Chem 23:1726–1730.
  • Tanahashi K, Natsume A, Ohka F. (2014). Assessment of tumor cells in a mouse model of diffuse infiltrative glioma by Raman spectroscopy. BioMed Res Int 2014:860241.
  • Tang B, Wang J, Hutchison JA, et al. (2016). Ultrasensitive, multiplex Raman frequency shift immunoassay of liver cancer biomarkers in physiological media. ACS Nano 10:871–879.
  • Tang W, Huang D, Wu L, et al. (2011). Surface plasmon enhanced ultraviolet emission and observation of random lasing from self-assembly Zn/ZnO composite nanowires. CrystEngComm 13:2336–2339.
  • Taylor DD, Gercel-Taylor C. (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21.
  • Thomas M, Mühlig S, Deckert‐Gaudig T, et al. (2013). Distinguishing chemical and electromagnetic enhancement in surface‐enhanced Raman spectra: The case of para‐nitrothiophenol. J Raman Spectrosc 44:1497–1505.
  • Tirinato L, Liberale C, Di Franco S, et al. (2015). Lipid droplets: A new player in colorectal cancer stem cells unveiled by spectroscopic imaging. Stem Cells 33:35–44.
  • Tong L, Zhu T, Liu Z. (2011). Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: From self-assembled arrays to individual gold nanoparticles. Chem Soc Rev 40:1296–1304.
  • Vendrell M, Maiti KK, Dhaliwal K, Chang YT. (2013). Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol 31:249–257.
  • Vinagre J, Pinto V, Celestino R, et al. (2014). Telomerase promoter mutations in cancer: An emerging molecular biomarker? Virchows Archiv 465:119–133.
  • Vinci S, Gelmini S, Mancini I, et al. (2013). Genetic and epigenetic factors in regulation of microRNA in colorectal cancers. Methods 59:138–146.
  • Vo-Dinh T, Fales AM, Griffin GD, et al. (2013). Plasmonic nanoprobes: From chemical sensing to medical diagnostics and therapy. Nanoscale 5:10127–10140.
  • Wang G, Lipert RJ, Jain M, et al. (2011a). Detection of the potential pancreatic cancer marker MUC4 in serum using surface-enhanced Raman scattering. Anal Chem 83:2554–2561.
  • Wang HN, Dhawan A, Du Y, et al. (2013a). Molecular sentinel-on-chip for SERS-based biosensing. Phys Chem Chem Phys 15:6008–6015.
  • Wang J, Lin D, Lin J, et al. (2014a). Label-free detection of serum proteins using surface-enhanced Raman spectroscopy for colorectal cancer screening. J Biomed Opt 19:087003.
  • Wang L, Asghar W, Demirci U, Wan Y. (2013b). Nanostructured substrates for isolation of circulating tumor cells. Nano Today 8:374–387.
  • Wang L, Guo T, Lu Q, et al. (2015a). Sea-urchin-like Au nanocluster with surface-enhanced Raman scattering in detecting epidermal growth factor receptor (EGFR) mutation status of malignant pleural effusion. ACS Appl Mater Interfaces 7:359–369.
  • Wang L, He D, Zeng J, et al. (2013c). Raman spectroscopy, a potential tool in diagnosis and prognosis of castration-resistant prostate cancer. J Biomed Opt 18:87001.
  • Wang W, Zhao J, Short M, Zeng H. (2014b). Real-time in vivo cancer diagnosis using Raman spectroscopy. J Biophoton 8:527–545.
  • Wang X, Qian X, Beitler JJ, et al. (2011b). Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res 71:1526–1532.
  • Wang X, Wang C, Cheng L, et al. (2012a). Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J Am Chem Soc 134:7414–7422.
  • Wang Y, Vaidyanathan R, Shiddiky MJ, Trau M. (2015b). Enabling rapid and specific surface-enhanced Raman scattering immunoassay using nanoscaled surface shear forces. ACS Nano9:6354–6362.
  • Wang Y, Yan B, Chen L. (2012b). SERS tags: Novel optical nanoprobes for bioanalysis. Chem Rev 113:1391–1428.
  • Wang YW, Kang S, Khan A, et al. (2015c). In vivo multiplexed molecular imaging of esophageal cancer via spectral endoscopy of topically applied SERS nanoparticles. Biomed Opt Exp 6:3714–3723.
  • Wang YW, Khan A, Leigh SY, et al. (2014c). Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus. Biomed Opt Exp 5:2883–2895.
  • Wang Z, Zong S, Yang J, et al. (2011c). Dual-mode probe based on mesoporous silica coated gold nanorods for targeting cancer cells. Biosens Bioelectron 26:2883–2889.
  • Webb JA, Bardhan R. (2014). Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale 6:2502–2530.
  • Wendel M, Bazhenova L, Boshuizen R, et al. (2012). Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: A glimpse into lung cancer biology. Phys Biol 9:016005.
  • Wu L, Wang Z, Zong S, et al. (2013a). Simultaneous evaluation of p53 and p21 expression level for early cancer diagnosis using SERS technique. Analyst 138:3450–3456.
  • Wu P, Gao Y, Lu Y, et al. (2013b). High specific detection and near-infrared photothermal therapy of lung cancer cells with high SERS active aptamer–silver–gold shell–core nanostructures. Analyst 138:6501–6510.
  • Wu X, Chen J, Wu M, Zhao JX. (2015). Aptamers: Active targeting ligands for cancer diagnosis and therapy. Theranostics 5:322–344.
  • Xia X, Li W, Zhang Y, Xia Y. (2013). Silica-coated dimers of silver nanospheres as surface-enhanced Raman scattering tags for imaging cancer cells. Interface Focus 3:20120092.
  • Xiao L, Harihar S, Welch DR, Zhou A. (2014). Imaging of epidermal growth factor receptor on single breast cancer cells using surface-enhanced Raman spectroscopy. Anal Chim Acta 843:73–82.
  • Xing H, Wong NY, Xiang Y, Lu Y. (2012). DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery. Curr Opin Chem Biol 16:429–435.
  • Xu H, Aizpurua J, Käll M, Apell P. (2000). Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62:4318–4324.
  • Yan B, Li B, Wen Z, et al. (2015). Label-free blood serum detection by using surface-enhanced Raman spectroscopy and support vector machine for the preoperative diagnosis of parotid gland tumors. BMC Cancer 15:650.
  • Yanaihara N, Caplen N, Bowman E, et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198.
  • Yang J, Wang Z, Zong S, et al. (2012). Distinguishing breast cancer cells using surface-enhanced Raman scattering. Anal Bioanal Chem 402:1093–1100.
  • Yasser M, Shaikh R, Chilakapati MK, Teni T. (2014). Raman spectroscopic study of radioresistant oral cancer sublines established by fractionated ionizing radiation. PLoS One 9:e97777.
  • Ye LP, Hu J, Liang L, Zhang CY. (2014). Surface-enhanced Raman spectroscopy for simultaneous sensitive detection of multiple microRNAs in lung cancer cells. Chem Commun 50:11883–11886.
  • Yim D, Kang H, Jeon SJ, et al. (2015). Graphene oxide-encoded Ag nanoshells with single-particle detection sensitivity towards cancer cell imaging based on SERRS. Analyst 140:3362–3367.
  • Yosef HK, Mavarani L, Maghnouj A, et al. (2015). In vitro prediction of the efficacy of molecularly targeted cancer therapy by Raman spectral imaging. Anal Bioanal Chem 407:8321–8331.
  • Yu MK, Park J, Jon S. (2012). Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2:3–44.
  • Yuan H, Fales AM, Khoury CG, et al. (2013). Spectral characterization and intracellular detection of surface-enhanced Raman scattering (SERS)-encoded plasmonic gold nanostars. J Raman Spectrosc 44:234–239.
  • Yue J, Liu Z, Cai X, et al. (2015). Bull serum albumin coated Au@Ag nanorods as SERS probes for ultrasensitive osteosarcoma cell detection. Talanta 150:503–509.
  • Zavaleta CL, Garai E, Liu JTC, et al. (2013). A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc Natl Acad Sci USA 110:E2288–E2297.
  • Zhang G, Li J, Shen A, Hu J. (2015). Synthesis of size-tunable chitosan encapsulated gold-silver nanoflowers and their application in SERS imaging of living cells. Phys Chem Chem Phys 17:21261–21267.
  • Zhang P, Zhang R, Gao M, Zhang X. (2014a). Novel nitrocellulose membrane substrate for efficient analysis of circulating tumor cells coupled with surface-enhanced Raman scattering imaging. ACS Appl Mater Interfaces 6:370–376.
  • Zhang W, Wang Y, Sun X, et al. (2014b). Mesoporous titania based yolk-shell nanoparticles as multifunctional theranostic platforms for SERS imaging and chemo-photothermal treatment. Nanoscale 6:14514–14522.
  • Zhao J, Lui H, Kalia S, Zeng H. (2015a). Real-time Raman spectroscopy for automatic in vivo skin cancer detection: An independent validation. Anal Bioanal Chem 407:8373–8379.
  • Zhao L, Kim TH, Kim HW, et al. (2015b). Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer. Acta Biomater 20:155–164.
  • Zheng C, Liang L, Xu S, et al. (2014). The use of Au@SiO2 shell-isolated nanoparticle-enhanced Raman spectroscopy for human breast cancer detection. Anal Bioanal Chem 406:5425–5432.
  • Zheng J, Bai J, Zhou Q, et al. (2015a). DNA-templated in situ growth of AgNPs on SWNTs: A new approach for highly sensitive SERS assay of microRNA. Chem Commun 51:6552–6555.
  • Zheng J, Ma D, Shi M, et al. (2015b). A new enzyme-free quadratic SERS signal amplification approach for circulating microRNA detection in human serum. Chem Commun 51:16271–16274.
  • Zhu J, Zhou J, Guo J, et al. (2013). Surface-enhanced Raman spectroscopy investigation on human breast cancer cells. Chem Central J 7:37.
  • Zong S, Chen C, Wang Z, et al. (2016). Surface enhanced Raman scattering based in situ hybridization strategy for telomere length assessment. ACS Nano 10:2950–2959.
  • Zong S, Wang Z, Chen H, Cui Y. (2013). Ultrasensitive telomerase activity detection by telomeric elongation controlled surface enhanced Raman scattering. Small 9:4215–4220.
  • Zong S, Wang Z, Chen H, Cui Y. (2014a). Assessing telomere length using surface enhanced Raman scattering. Sci Rep 4:6977.
  • Zong S, Wang Z, Chen H, et al. (2014b). Colorimetry and SERS dual-mode detection of telomerase activity: Combining rapid screening with high sensitivity. Nanoscale 6:1808–1816.
  • Zong S, Wang Z, Yang J, et al. (2012). A SERS and fluorescence dual mode cancer cell targeting probe based on silica coated Au@Ag core-shell nanorods. Talanta 97:368–375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.