806
Views
20
CrossRef citations to date
0
Altmetric
Review Article

The importance of drug metabolites synthesis: the case-study of cardiotoxic anticancer drugs

, , &
Pages 158-196 | Received 25 Jan 2017, Accepted 02 Apr 2017, Published online: 25 Apr 2017

References

  • Abraham TW, Kalman TI, Mcintee EJ, Wagner CR. (1996). Synthesis and biological activity of aromatic amino acid phosphoramidates of 5-fluoro-2′-deoxyuridine and 1-β-arabinofuranosylcytosine: evidence of phosphoramidase activity. J Med Chem 39:4569–4575.
  • Aminkeng F, Bhavsar AP, Visscher H, et al. (2015). A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat Genet 47:1079–1084.
  • Ang C, Kornbluth M, Thirlwell MP, Rajan RD. (2010). Capecitabine-induced cardiotoxicity: Case report and review of the literature. Curr Oncol 17:59–63.
  • Anon. (2006). Nexavar: INN-Sorafenib [last accessed 5 May 2016].
  • Anon. (2015). Nexavar. Summary of product characteristics [last accessed 5 May 2016].
  • Arellano M, Malet-Martino M, Martino R, Gires P. (1998). The anti-cancer drug 5-fluorouracil is metabolized by the isolated perfused rat liver and in rats into highly toxic fluoroacetate. Br J Cancer 77:79–86.
  • Asha S, Vidyavathi M. (2010). Role of human liver microsomes in in vitro metabolism of drugs—A review. Appl Biochem Biotechnol 160:1699–1722.
  • Baillie TA, Cayen MN, Fouda H, et al. (2002). Drug metabolites in safety testing. Toxicol Appl Pharmacol 182:188–196.
  • Balis FM, Holcenberg JS, Bleyer WA. (1983). Clinical pharmacokinetics of commonly used anticancer drugs. Clin Pharmacokinet 8:202–232.
  • Batra VK, Morrison JA, Woodward DL, et al. (1986). Pharmacokinetics of mitoxantrone in man and laboratory animals. Drug Metab Rev 17:311–329.
  • Bjornsson TD, Callaghan JT, Einolf HJ, et al. (2003). The conduct of in vitro and in vivo drug–drug interaction studies: A pharmaceutical research and manufacturers of America (PhRMA) perspective. Drug Metab Dispos 31:815–832.
  • Blanz J, Mewes K, Ehninger G, et al. (1991). Evidence for oxidative activation of mitoxantrone in human, pig, and rat. Drug Metab Dispos 19:871–880.
  • Boucek RJ Jr, Olson RD, Brenner DE, et al. (1987). The major metabolite of doxorubicin is a potent inhibitor of membrane-associated ion pumps: A correlative study of cardiac muscle with isolated membrane fractions. J Biol Chem 262:15851–15856.
  • Brandon EFA, Raap CD, Meijerman I, et al. (2003). An update on in vitro test methods in human hepatic drug biotransformation research: Pros and cons. Toxicol Appl Pharmacol 189:233–246.
  • Burridge PW, Li YF, Matsa E, et al. (2016). Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med 22:547–556.
  • Caballero J, Muñoz C, Alzate-Morales JH, et al. (2012). Synthesis, in silico, in vitro, and in vivo investigation of 5-[11C]methoxy-substituted sunitinib, a tyrosine kinase inhibitor of VEGFR-2. Eur J Med Chem 58:272–280.
  • Chawla SP, Chua VS, Hendifar AF, et al. (2015). A phase 1B/2 study of aldoxorubicin in patients with soft tissue sarcoma. Cancer 121:570–579.
  • Chiccarelli FS, Morrison JA, Cosulich DB, et al. (1986). Identification of human urinary mitoxantrone metabolites. Cancer Res 46:4858–4861.
  • Chu TF, Rupnick MA, Kerkela R, et al. (2007). Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 370:2011–2019.
  • Connors TA, Cox PJ, Farmer PB, et al. (1974). Some studies of the active intermediates formed in the microsomal metabolism of cyclophosphamide and isophosphamide. Biochem Pharmacol 23:115–129.
  • Costa VM, Carvalho F, Duarte JA, et al. (2013). The heart as a target for xenobiotic toxicity: The cardiac susceptibility to oxidative stress. Chem Res Toxicol 26:1285–1311.
  • Crombag MRBS, Joerger M, Thürlimann B, et al. (2016). Pharmacokinetics of selected anticancer drugs in elderly cancer patients: Focus on breast cancer. Cancers 8:1–22.
  • Daumar P, Decombat C, Chezal J-M, et al. (2011). Design, synthesis and in vitro drug release investigation of new potential 5-FU prodrugs. Eur J Med Chem 46:2867–2879.
  • De Jonge ME, Huitema ADR, Rodenhuis S, Beijnen JH. (2005). Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 44:1135–1164.
  • Di Gion P, Kanefendt F, Lindauer A, et al. (2011). Clinical pharmacokinetics of tyrosine kinase inhibitors: Focus on pyrimidines, pyridines and pyrroles. Clin Pharmacokinet 50:551–603.
  • Dirven HA, Van Ommen B, Van Bladeren PJ. (1994). Involvement of human glutathione S-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione. Cancer Res 54:6215–6220.
  • Dores-Sousa JL, Duarte JA, Seabra V, et al. (2015). The age factor for mitoxantrone's cardiotoxicity: Multiple doses render the adult mouse heart more susceptible to injury. Toxicology 329:106–119.
  • Dorr RT, Lagel K. (1994). Effect of sulfhydryl compounds and glutathione depletion on rat heart myocyte toxicity induced by 4-hydroperoxycyclophosphamide and acrolein in vitro. Chem Biol Interact 93:117–128.
  • Dumitriu E, Hulea V, Bilba N, et al. (1993). Synthesis of acrolein by vapor phase condensation of formaldehyde and acetaldehyde over oxides loaded zeolites. J Mol Catal 79:175–185.
  • Ehninger G, Proksch B, Hartmann F, et al. (1984). Mitoxantrone metabolism in the isolated perfused rat liver. Cancer Chemother Pharmacol 12:50–52.
  • Ehninger G, Schuler U, Proksch B, et al. (1990). Pharmacokinetics and metabolism of mitoxantrone: A review. Clin Pharmacokinet 18:365–380.
  • Ekhart C, Doodeman VD, Rodenhuis S, et al. (2008). Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenet Genom 18:515–523.
  • Elsinghorst PW, Gütschow M. (2009). Synthesis of 2H- and 13C-labelled sunitinib and its primary metabolite. J Label Comp Radiopharm 52:360–365.
  • Escudier B, Eisen T, Stadler WM, et al. (2007). Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134.
  • Faivre S, Delbaldo C, Vera K, et al. (2006). Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 24:25–35.
  • Fenselau C, Kan MN, Rao SS, et al. (1977). Identification of aldophosphamide as a metabolite of cyclophosphamide in vitro and in vivo in humans. Cancer Res 37:2538–2543.
  • Fernández A, Sanguino A, Peng Z, et al. (2007). An anticancer C-Kit kinase inhibitor is reengineered to make it more active and less cardiotoxic. J Clin Invest 117:4044–4054.
  • Force T, Kolaja KL. (2011). Cardiotoxicity of kinase inhibitors: The prediction and translation of preclinical models to clinical outcomes. Nat Rev Drug Discov 10:111–126.
  • Force T, Krause DS, Van Etten RA. (2007). Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer 7:332–344.
  • Frickhofen N, Beck FJ, Jung B, et al. (2002). Capecitabine can induce acute coronary syndrome similar to 5-fluorouracil. Ann Oncol 13:797–801.
  • Fujita K-I, Matsukawa A, Shibata K, et al. (1994). Synthesis of 5-fluorouridine 5′-diphosphate galactose from 5-fluorouridine by chemical phosphorylation and microbial uridylyl transfer. Carbohydr Res 265:299–302.
  • Fura A, Shu Y-Z, Zhu M, et al. (2004). Discovering drugs through biological transformation: Role of pharmacologically active metabolites in drug discovery. J Med Chem 47:4339–4351.
  • Gamcsik MP, Dolan ME, Andersson BS, Murray D. (1999). Mechanisms of resistance to the toxicity of cyclophosphamide. Curr Pharm Des 5:587–605.
  • Gardner ER, Burger H, Van Schaik RH, et al. (2006). Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib. Clin Pharmacol Ther 80:192–201.
  • Gasser R, Funk C, Matzinger P, et al. (1999). Use of transgenic cell lines in mechanistic studies of drug metabolism. Toxicol In Vitro 13:625–632.
  • Ghassabian S, Rawling T, Zhou F, et al. (2012). Role of human CYP3A4 in the biotransformation of sorafenib to its major oxidized metabolites. Biochem Pharmacol 84:215–223.
  • Gibson GG, Skett P. (2001). Introduction to drug metabolism. 3rd ed. London: Nelson Thornes.
  • Gieschke R, Burger HU, Reigner B, et al. (2003). Population pharmacokinetics and concentration–effect relationships of capecitabine metabolites in colorectal cancer patients. Br J Clin Pharmacol 55:252–263.
  • Goldman JM, Melo JV. (2003). Chronic myeloid leukemia—Advances in biology and new approaches to treatment. N Engl J Med 349:1451–1464.
  • Gross E, Busse B, Riemenschneider M, et al. (2008). Strong association of a common dihydropyrimidine dehydrogenase gene polymorphism with fluoropyrimidine-related toxicity in cancer patients. PLoS One 3:e4003.
  • Gschwind HP, Pfaar U, Waldmeier F, et al. (2005). Metabolism and disposition of imatinib mesylate in healthy volunteers. Drug Metab Dispos 33:1503–1512.
  • Gunaratna C. (2000). Drug metabolism and pharmacokinetics in drug discovery: A primer for bioanalytical chemists. Part I. Bioanal Sys Inc 19:17–23.
  • Han H-K, Amidon GL. (2000). Targeted prodrug design to optimize drug delivery. AAPS PharmSci 2:48–58.
  • Heggie GD, Sommadossi JP, Cross DS, et al. (1987). Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res 47:2203–2206.
  • Heidelberger C. (1975). Fluorinated pyrimidines and their nucleosides. In: Sartorelli AC, Johns DG, eds. Antineoplastic and immunosuppressive agents: Part II. Berlin, Heidelberg: Springer Berlin Heidelberg, 193–231.
  • Hill DL, Kirk MC, Struck RF. (1970). Isolation and identification of 4-ketocyclophosphamide, a possible active form of the antitumor agent cyclophosphamide. J Am Chem Soc 92:3207–3208.
  • Huang Q, Zhou C, Chen X, et al. (2015). Prodrug AST-003 improves the therapeutic index of the multi-targeted tyrosine kinase inhibitor sunitinib. PLoS One 10:e0141395.
  • Hudis CA. (2007). Trastuzumab—Mechanism of action and use in clinical practice. N Engl J Med 357:39–51.
  • Hudyma TW, Bush K, Colson KL, et al. (1993). Synthesis and release of doxorubicin from a cephalosporin based prodrug by a β-lactamase-immunoconjugate. Bioorg Med Chem Lett 3:323–328.
  • Huttunen KM, Raunio H, Rautio J. (2011). Prodrugs—From serendipity to rational design. Pharmacol Rev 63:750–771.
  • Ikenaka K, Shirasaka T, Kitano S, Fujii S. (1979). Effect of uracil on metabolism of 5-fluorouracil in vitro. Gan 70:353–359.
  • U.S. Food and Drug Administration. (2005). Guidance for industry: Drug interaction studies – Study design, data analysis, and implications for dosing and labeling. FDA: Center for Drug Evaluation and Research.
  • U.S. Food and Drug Administration. (2006). Guidance for industry: Safety testing of drug metabolites. FDA: Center for Drug Evaluation and Research.
  • Jamieson D, Lee J, Cresti N, et al. (2014). Pharmacogenetics of adjuvant breast cancer treatment with cyclophosphamide, epirubicin and 5-fluorouracil. Cancer Chemother Pharmacol 74:667–674.
  • Jia L, Liu X. (2007). The conduct of drug metabolism studies considered good practice (II): In vitro experiments. Curr Drug Metab 8:822–829.
  • Joerger M, Huitema ADR, Meenhorst PL, et al. (2005). Pharmacokinetics of low-dose doxorubicin and metabolites in patients with AIDS-related kaposi sarcoma. Cancer Chemother Pharmacol 55:488–496.
  • Kerkelä R, Grazette L, Yacobi R, et al. (2006). Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 12:908–916.
  • Khosravan R, Toh M, Garrett M, et al. (2010). Pharmacokinetics and safety of sunitinib malate in subjects with impaired renal function. J Clin Pharmacol 50:472–481.
  • Kil K-E, Ding Y-S, Lin K-S, et al. (2007). Synthesis and positron emission tomography studies of carbon-11-labeled imatinib (Gleevec). Nucl Med Biol 34:153–163.
  • Kratz F, Abu Ajaj K, Warnecke A. (2007). Anticancer carrier-linked prodrugs in clinical trials. Expert Opin Investig Drugs 16:1037–1058.
  • Kratz F, Warnecke A, Scheuermann K, et al. (2002). Probing the cysteine-34 position of endogenous serum albumin with thiol-binding doxorubicin derivatives. Improved efficacy of an acid-sensitive doxorubicin derivative with specific albumin-binding properties compared to that of the parent compound. J Med Chem 45:5523–5533.
  • Kratz F. (2007). DOXO-EMCH (INNO-206): The first albumin-binding prodrug of doxorubicin to enter clinical trials. Expert Opin Investig Drugs 16:855–866.
  • Lafrate AL, Katzenellenbogen JA. (2007). Improved chemical syntheses of 5,6-dihydro-5-fluorouracil. J Org Chem 72:8573–8576.
  • Lathia C, Lettieri J, Cihon F, et al. (2006). Lack of effect of ketoconazole-mediated CYP3A inhibition on sorafenib clinical pharmacokinetics. Cancer Chemother Pharmacol 57:685–692.
  • Lebrecht D, Geist A, Ketelsen UP, et al. (2007). The 6-maleimidocaproyl hydrazone derivative of doxorubicin (DOXO-EMCH) is superior to free doxorubicin with respect to cardiotoxicity and mitochondrial damage. Int J Cancer 120:927–934.
  • Lenihan DJ, Kowey PR. (2013). Overview and management of cardiac adverse events associated with tyrosine kinase inhibitors. Oncologist 18:900–908.
  • Levine ES, Friedman HS, Griffith OW, et al. (1993). Cardiac cell toxicity induced by 4-hydroperoxycyclophosphamide is modulated by glutathione. Cardiovasc Res 27:1248–1253.
  • Licata S, Saponiero A, Mordente A, Minotti G. (2000). Doxorubicin metabolism and toxicity in human myocardium: Role of cytoplasmic deglycosidation and carbonyl reduction. Chem Res Toxicol 13:414–420.
  • Lin JH, Lu AY. (1997). Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev 49:403–449.
  • Lipshultz SE, Cochran TR, Franco VI, Miller TL. (2013). Treatment-related cardiotoxicity in survivors of childhood cancer. Nat Rev Clin Oncol 10:697–710.
  • Liu X, Jia L. (2007). The conduct of drug metabolism studies considered good practice (I): Analytical systems and in vivo studies. Curr Drug Metab 8:815–821.
  • Longley DB, Harkin DP, Johnston PG. (2003). 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338.
  • Low JE, Borch RF, Sladek NE. (1982). Conversion of 4-hydroperoxycyclophosphamide and 4-hydroxycyclophosphamide to phosphoramide mustard and acrolein mediated by bifunctional catalysis. Cancer Res 42:830–837.
  • Ludeman SM. (1999). The chemistry of the metabolites of cyclophosphamide. Curr Pharm Des 5:627–644.
  • Luffer-Atlas D. (2008). Unique/major human metabolites: Why, how, and when to test for safety in animals. Drug Metab Rev 40:447–463.
  • Ma S, Subramanian R, Xu Y, et al. (2008). Structural characterization of novel adenine dinucleotide phosphate conjugates of imatinib in incubations with rat and human liver microsomes. Drug Metab Dispos 36:2414–2418.
  • Ma S, Xu Y, Shou M. (2009). Characterization of imatinib metabolites in rat and human liver microsomes: Differentiation of hydroxylation from N-oxidation by liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 23:1446–1450.
  • Maddin N, Husin A, Gan SH, et al. (2016). Impact of CYP3A4*18 and CYP3A5*3 polymorphisms on imatinib mesylate response among chronic myeloid leukemia patients in Malaysia. Oncol Ther 4:303–314.
  • Maharsy W, Aries A, Mansour O, et al. (2014). Ageing is a risk factor in imatinib mesylate cardiotoxicity. Eur J Heart Fail 16:367–376.
  • Maharsy W. (2015). Chemotherapy induced cardiotoxicity: Facts, breakthroughs, and challenges. J Med 5:51–56.
  • Malet-Martino M, Martino R. (2002). Clinical studies of three oral prodrugs of 5-fluorouracil (capecitabine, UFT, S-1): A review. Oncologist 7:288–323.
  • Manley PW, Blasco F, Mestan J, Aichholz R. (2013). The kinetic deuterium isotope effect as applied to metabolic deactivation of imatinib to the des-methyl metabolite, CGP74588. Bioorg Med Chem 21:3231–3239.
  • Manthey CL, Sladek NE. (1988). Kinetic characterization of the catalysis of “activated” cyclophosphamide (4-hydroxycyclophosphamide/aldophosphamide) oxidation to carboxyphosphamide by mouse hepatic aldehyde dehydrogenases. Biochem Pharmacol 37:2781–2790.
  • Marull M, Rochat B. (2006). Fragmentation study of imatinib and characterization of new imatinib metabolites by liquid chromatography-triple-quadrupole and linear ion trap mass spectrometers. J Mass Spectrom 41:390–404.
  • Matsubara I, Kamiya J, Imai S. (1980). Cardiotoxic effects of 5-fluorouracil in the guinea pig. Jpn J Pharmacol 30:871–879.
  • Mellor HR, Bell AR, Valentin JP, Roberts RR. (2011). Cardiotoxicity associated with targeting kinase pathways in cancer. Toxicol Sci 120:14–32.
  • Menna P, Gonzalez Paz O, Chello M, et al. (2012). Anthracycline cardiotoxicity. Expert Opin Drug Saf 11:S21–S36.
  • Mewes K, Blanz J, Ehninger G, et al. (1993). Cytochrome P-450-induced cytotoxicity of mitoxantrone by formation of electrophilic intermediates. Cancer Res 53:5135–5142.
  • Minotti G, Cavaliere AF, Mordente A, et al. (1995). Secondary alcohol metabolites mediate iron delocalization in cytosolic fractions of myocardial biopsies exposed to anticancer anthracyclines. Novel linkage between anthracycline metabolism and iron-induced cardiotoxicity. J Clin Invest 95:1595–1605.
  • Minotti G, Licata S, Saponiero A, et al. (2000). Anthracycline metabolism and toxicity in human myocardium: Comparisons between doxorubicin, epirubicin, and a novel disaccharide analogue with a reduced level of formation and [4Fe-4S] reactivity of its secondary alcohol metabolite. Chem Res Toxicol 13:1336–1341.
  • Mita MM, Natale RB, Wolin EM, et al. (2015). Pharmacokinetic study of aldoxorubicin in patients with solid tumors. Invest New Drugs 33:341–348.
  • Miwa M, Ura M, Nishida M, et al. (1998). Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur J Cancer 34:1274–1281.
  • Monneret C, Gagnet R, Florent J-C. (1993). Synthesis of cyclophosphamide analogs from aminotrideoxy sugars. Carbohydr Res 240:313–322.
  • Moore MJ. (1991). Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 20:194–208.
  • Nakajima M, Komagata S, Fujiki Y, et al. (2007). Genetic polymorphisms of CYP2B6 affect the pharmacokinetics/pharmacodynamics of cyclophosphamide in Japanese cancer patients. Pharmacogenet Genomics 17:431–445.
  • Nakamura S, Aoki M, Mori A, et al. (2010). Analysis of cardiac toxicity caused by cyclophosphamide in the H9c2 cell line and isolated and perfused rat hearts. Gan Kagaku Ryoho 37:677–680.
  • Nielsen DL, Andersson M, Kamby C. (2009). HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors. Cancer Treat Rev 35:121–136.
  • Nih. (2013). Capecitabine. Available from: https://www.cancer.gov/about-cancer/treatment/drugs/capecitabine [last accessed 22 Mar 2017].
  • Obach RS. (2013). Pharmacologically active drug metabolites: Impact on drug discovery and pharmacotherapy. Pharmacol Rev 65:578–640.
  • Olson RD, Mushlin PS, Brenner DE, et al. (1988). Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc Natl Acad Sci USA 85:3585–3589.
  • Orphanos GS, Ioannidis GN, Ardavanis AG. (2009). Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncol 48:964–970.
  • Panousis C, Kettle AJ, Phillips DR. (1997). Neutrophil-mediated activation of mitoxantrone to metabolites which form adducts with DNA. Cancer Lett 113:173–178.
  • Peer CJ, Sissung TM, Kim A, et al. (2012). Sorafenib is an inhibitor of UGT1A1 but is metabolized by UGT1A9: Implications of genetic variants on pharmacokinetics and hyperbilirubinemia. Clin Cancer Res 18:2099–2107.
  • Perez EA, Koehler M, Byrne J, et al. (2008). Cardiac safety of lapatinib: Pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clin Proc 83:679–686.
  • Petros WP, Hopkins PJ, Spruill S, et al. (2005). Associations between drug metabolism genotype, chemotherapy pharmacokinetics, and overall survival in patients with breast cancer. J Clin Oncol 23:6117–6125.
  • Pleiss U, Gerisch M, Seidel D. (2006). Syntheses of [2H3, 15N], [14C]Nexavar™ and its labeled metabolites. J Label Comp Radiopharm 49:603–613.
  • Pratt CB, Vietti TJ, Etcubanas E, et al. (1986). Novantrone for childhood malignant solid tumors. A pediatric oncology group phase II study. Invest New Drugs 4:43–48.
  • Raj S, Franco VI, Lipshultz SE. (2014). Anthracycline-induced cardiotoxicity: A review of pathophysiology, diagnosis, and treatment. Curr Treat Options Cardiovasc Med 16:315.
  • Rautio J, Kumpulainen H, Heimbach T, et al. (2008). Prodrugs: Design and clinical applications. Nat Rev Drug Discov 7:255–270.
  • Reis-Mendes A, Gomes AS, Carvalho RA, et al. (2017). Naphthoquinoxaline metabolite of mitoxantrone is less cardiotoxic than the parent compound and it can be a more cardiosafe drug in anticancer therapy. Arch Toxicol 91:1871–1890.
  • Reis-Mendes AF, Sousa E, De Lourdes Bastos M, Costa VM. (2016). The role of the metabolism of anticancer drugs in their induced-cardiotoxicity. Curr Drug Metab 17:75–90.
  • Ren S, Yang JS, Kalhorn TF, Slattery JT. (1997). Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res 57:4229–4235.
  • Reszka K, Kolodziejczyk P, William Lown J. (1986). Horseradish peroxidase-catalyzed oxidation of mitoxantrone: Spectrophotometric and electron paramagnetic resonance studies. J Free Radic Biol Med 2:25–32.
  • Richard B, Fabre G, De Sousa G, et al. (1991). Interspecies variability in mitoxantrone metabolism using primary cultures of hepatocytes isolated from rat, rabbit and humans. Biochem Pharmacol 41:255–262.
  • Rochat B. (2005). Role of cytochrome P450 activity in the fate of anticancer agents and in drug resistance: Focus on tamoxifen, paclitaxel and imatinib metabolism. Clin Pharmacokinet 44:349–366.
  • Rollas S, Küçükgüzel ŞG. (2008). Hydrazone, amide, carbamate, macromolecular and other prodrugs of doxorubicin. Open Drug Deliv J 2:77–85.
  • Rooseboom M, Commandeur JNM, Vermeulen NPE. (2004). Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol Rev 56:53–102.
  • Rossato LG, Costa VM, Dallegrave E, et al. (2014). Mitochondrial cumulative damage induced by mitoxantrone: Late onset cardiac energetic impairment. Cardiovasc Toxicol 14:30–40.
  • Rossato LG, Costa VM, De Pinho PG, et al. (2013). The metabolic profile of mitoxantrone and its relation with mitoxantrone-induced cardiotoxicity. Arch Toxicol 87:1809–1820.
  • Salvatorelli E, Menna P, Minotti G. (2015). Managing anthracycline-induced cardiotoxicity: Beginning with the end in mind. Future Cardiol 11:363–366.
  • Sawyer DB. (2013). Anthracyclines and heart failure. N Engl J Med 368:1154–1156.
  • Senturk T, Kanat O, Evrensel T, Aydinlar A. (2009). Capecitabine-induced cardiotoxicity mimicking myocardial infarction. Neth Heart J 17:277–280.
  • Seong SJ, Lim M, Sohn SK, et al. (2013). Influence of enzyme and transporter polymorphisms on trough imatinib concentration and clinical response in chronic myeloid leukemia patients. Ann Oncol 24:756–760.
  • Sharma A, Burridge PW, Mckeithan WL, et al. (2017). High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Sci Transl Med 9:eaaf2584.
  • Shaw IC, Graham MI, Mclean AEM. (1983). 2-Chloroacetaldehyde, a metabolite of cyclophosphamide in the rat. Xenobiotica 13:433–437.
  • Shipp NG, Dorr RT, Alberts DS, et al. (1993). Characterization of experimental mitoxantrone cardiotoxicity and its partial inhibition by ICRF-187 in cultured neonatal rat heart cells. Cancer Res 53:550–556.
  • Skarka A, Skarydova L, Stambergova H, Wsol V. (2011). Anthracyclines and their metabolism in human liver microsomes and the participation of the new microsomal carbonyl reductase. Chem Biol Interact 191:66–74.
  • Slamon DJ, Leyland-Jones B, Shak S, et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792.
  • Smith LA, Cornelius VR, Plummer CJ, et al. (2010). Cardiotoxicity of anthracycline agents for the treatment of cancer: Systematic review and meta-analysis of randomised controlled trials. BMC Cancer 10:337.
  • Speed B, Bu HZ, Pool WF, et al. (2012). Pharmacokinetics, distribution, and metabolism of [14C]sunitinib in rats, monkeys, and humans. Drug Metab Dispos 40:539–555.
  • Speed W, Bello C, Peng G, et al. (2008). In vitro and in vivo metabolism of sunitinib in nonclinical species and humans. Cancer Res 68:1285–1285.
  • Stella VJ, Charman WNA, Naringrekar VH. (1985). Prodrugs. Do they have advantages in clinical practice? Drugs 29:455–473.
  • Struck RF, Schmid SM, Waud WR. (1994). Antitumor activity of halogen analogs of phosphoramide, isophosphoramide, and triphosphoramide mustards, the cytotoxic metabolites of cyclophosphamide, ifosfamide, and trofosfamide. Cancer Chemother Pharmacol 34:191–196.
  • Struck RF, Thorpe MC, Coburn WC, Laster WR. (1974). Cyclophosphamide. Complete inhibition of murine leukemia L1210 in vivo by a Fenton oxidation product. J Am Chem Soc 96:313–315.
  • Strumberg D, Clark JW, Awada A, et al. (2007). Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib: A review of four phase I trials in patients with advanced refractory solid tumors. Oncologist 12:426–437.
  • Takanashi S, Bachur NR. (1976). Adriamycin metabolism in man. Evidence from urinary metabolites. Drug Metab Dispos 4:79–87.
  • Telli ML, Witteles RM, Fisher GA, Srinivas S. (2008). Cardiotoxicity associated with the cancer therapeutic agent sunitinib malate. Ann Oncol 19:1613–1618.
  • Unger C, Haring B, Medinger M, et al. (2007). Phase I and pharmacokinetic study of the (6-maleimidocaproyl)hydrazone derivative of doxorubicin. Clin Cancer Res 13:4858–4866.
  • Van Erp NP, Gelderblom H, Guchelaar HJ. (2009). Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 35:692–706.
  • Van Erp NP, Gelderblom H, Karlsson MO, et al. (2007). Influence of CYP3A4 inhibition on the steady-state pharmacokinetics of imatinib. Clin Cancer Res 13:7394–7400.
  • Veal GJ, Cole M, Chinnaswamy G, et al. (2016). Cyclophosphamide pharmacokinetics and pharmacogenetics in children with B-cell non-Hodgkin's lymphoma. Eur J Cancer 55:56–64.
  • Vejpongsa P, Yeh ETH. (2014). Prevention of anthracycline-induced cardiotoxicity: Challenges and opportunities. J Am Coll Cardiol 64:938–945.
  • Venn RF. (2008). Principles and practice of bioanalysis. 2nd ed. Boca Raton (FL): CRC Press.
  • Voon PJ, Yap HL, Ma CYT, et al. (2013). Correlation of aldo‐ketoreductase (AKR) 1C3 genetic variant with doxorubicin pharmacodynamics in Asian breast cancer patients. Br J Clin Pharmacol 75:1497–1505.
  • Walko CM, Lindley C. (2005). Capecitabine: A review. Clin Ther 27:23–44.
  • Weenen H, Van Maanen JMS, De Planque MM, et al. (1984). Metabolism of 4′-modified analogs of doxorubicin. Unique glucuronidation pathway for 4′-epidoxorubicin. Eur J Cancer Clin Oncol 20:919–926.
  • Wijesinghe N, Thompson PI, McAlister H. (2006). Acute coronary syndrome induced by capecitabine therapy. Heart Lung Circ 15:337–339.
  • Wolf CR, Macpherson JS, Smyth JF. (1986). Evidence for the metabolism of mitozantrone by microsomal glutathione transferases and 3-methylcholanthrene-inducible glucuronosyl transferases. Biochem Pharmacol 35:1577–1581.
  • Yule SM, Price L, McMahon AD, et al. (2004). Cyclophosphamide metabolism in children with non-Hodgkin's lymphoma. Clin Cancer Res 10:455.
  • Zhang RW, Soong SJ, Liu TP, et al. (1992). Pharmacokinetics and tissue distribution of 2-fluoro-beta-alanine in rats. Potential relevance to toxicity pattern of 5-fluorouracil. Drug Metab Dispos 20:113–119.
  • Zhang S, Liu X, Bawa-Khalfe T, et al. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18:1639–1642.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.