415
Views
9
CrossRef citations to date
0
Altmetric
Review Article

Biotransformation and bioactivation reactions – 2017 literature highlights**

, , &

References

  • Khojasteh SC, Rietjens IMCM, Dalvie D, Miller G. 2017. Biotransformation and bioactivation reactions – 2016 literature highlights. Drug Metab Rev. 49:285–317.
  • Baillie TA, Dalvie D, Rietjens IMCM, Cyrus Khojasteh S. 2016. Biotransformation and bioactivation reactions – 2015 literature highlights. Drug Metab Rev. 48:113–138.

References

  • Liu H, Michmerhuizen MJ, Lao Y, Wan K, Salem AH, Sawicki J, Serby M, Vaidyanathan S, Wong SL, Agarwal S, et al. 2017. Metabolism and disposition of a novel B-cell lymphoma-2 inhibitor venetoclax in humans and characterization of its unusual metabolites. Drug Metab Dispos. 45:294–305.
  • Scheible H, Kraetzer F, Marx A, Johne A, Wimmer E. 2017. Metabolism of the MEK1/2 inhibitor pimasertib involves a novel conjugation with phosphoethanolamine in patients with solid tumors. Drug Metab Dispos. 45:174–182.
  • Takahashi RH, Wang X, Segraves NL, Wang J, Chang JH, Khojasteh SC, Ma S. 2017. CYP1A1-Mediated intramolecular rearrangement of aminoazepane in GDC-0339. Drug Metab Dispos. 45:1084–1092.
  • Vrobel I, Friedecký D, Faber E, Najdekr L, Mičová K, Karlíková R, Adam T. 2017. Novel sulphur-containing imatinib metabolites found by untargeted LCHRMS Analysis. Eur J Pharm Sci. 104:335–343.

References

  • Farooq M, Kelly EJ, Unadkat JD. 2016. CYP2D6 is inducible by endogenous and exogenous corticosteroids. Drug Metab Dispos. 44:750–757.
  • Gaedigk A, Sangkuhl K, Whirl-Carrillo M, Klein T, Leeder JS. 2017. Prediction of CYP2D6 phenotype from genotype across world populations. Genet Med. 19:69–76.
  • Gonzalez FJ. 2008. Regulation of hepatocyte nuclear factor 4 alpha-mediated transcription. Drug Metab Pharmacokinet. 23:2–7.
  • Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME, et al. 2000. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell. 6:517–526.
  • Hart SN, Wang S, Nakamoto K, Wesselman C, Li Y, Zhong XB. 2008. Genetic polymorphisms in cytochrome P450 oxidoreductase influence microsomal P450-catalyzed drug metabolism. Pharmacogenet Genomics. 18:11–24.
  • Koh KH, Pan X, Shen HW, Arnold SL, Yu AM, Gonzalez FJ, Isoherranen N, Jeong H. 2014. Altered expression of small heterodimer partner governs cytochrome P450 (CYP) 2D6 induction during pregnancy in CYP2D6-humanized mice. J Biol Chem. 289:3105–3113.
  • Napolitanoa G, Stinglb JC, Schmida M, Vivianic R. 2017. Predicting CYP2D6 phenotype from resting brain perfusion images by gradient boosting. Psychiatry Res: Neuroimaging. 259:16–24.
  • Tracy TS, Venkataramanan R, Glover DD, Caritis SN. 2005. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A Activity) during pregnancy. Am J Obstet Gynecol. 192:633–639.
  • Zanger UM, Schwab M. 2013. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 138:103–141.

References

  • Fan PW, Zhang D, Halladay JS, Driscoll JP, Khojasteh SC. 2016. Going beyond common drug metabolizing enzymes: case studies of biotransformation involving aldehyde oxidase, γ-glutamyl transpeptidase, cathepsin B, flavin-containing monooxygenase, and ADP-ribosyltransferase. Drug Metab Dispos. 44:1253–1261.
  • Gebauer M. 2007. Synthesis and structure–activity relationships of novel warfarin derivatives. Bioorg Med Chem. 15:2414–2420.
  • Haque JA, McDonald MG, Kulman JD, Rettie AE. 2014. A cellular system for quantitation of vitamin K cycle activity: structure–activity effects on vitamin K antagonism by warfarin metabolites. Blood. 123:582–589.
  • Misato U, Atsushi K, Masahiro I. 2017. Stereoselective hepatic disposition of ibuprofen in the perfused liver of rat with adjuvant-induced arthritis. Xenobiotica. 47:943–950.

References

  • Behr C, Kamp H, Fabian E, Krennrich G, Mellert W, Peter E, Strauss V, Walk T, Rietjens IMCM, van Ravenzwaay B. 2017. Gut microbiome-related metabolic changes in plasma of antibiotic-treated rats. Arch Toxicol. 91:3439–3454.
  • Bjorkholm B, Bok CM, Lundin A, Rafter J, Hibberd ML, Pettersson S. 2009. Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One. 4:e6958.
  • IPCS. 2005. Chemical-specific adjustment factors for interspecies differences and human variability: guidance document for use of data in dose/concentration-response assessment. World Health Organization, Geneva. http://apps.who.int/iris/bitstream/handle/10665/43294/9241546786_eng.pdf;jsessionid=01B11F7376535345FA19F13F64CB6B19?sequence=1
  • Li CYF, Lee S, Cade S, Kuo LJ, Schultz IR, Bhatt DK, Prasad B, Bammler TK, Cui JY. 2017. Novel Interactions between Gut Microbiome and Host Drug-Processing Genes Modify the Hepatic Metabolism of the Environmental Chemicals Polybrominated Diphenyl Ethers. Drug Metab Dispos. 45:1197–1214.
  • Renwick AG. 1993. Data-derived safety uncertainty factors for the evaluation of food additives and environmental contaminants. Food Add Contam. 10:275–305.
  • Selwyn FP, Cheng SL, Bammler TK, Prasad B, Vrana M, Klaassen C, Cui JY. 2015. Developmental regulation of drug-processing genes in livers of germ-free mice. Toxicol Sci. 147:84–103.
  • Selwyn FP, Cheng SL, Klaassen CD, Cui JY. 2016. Regulation of hepatic drug-metabolizing enzymes in germ-free mice by conventionalization and probiotics. Drug Metab Dispos. 44:262–274.
  • Toda T, Saito N, Ikarashi N, Ito K, Yamamoto M, Ishige A, Watanabe K, Sugiyama K. 2009. Intestinal flora induces the expression of Cyp3a in the mouse liver. Xenobiotica. 39:323–334.

References

  • Gibellini F, Smith TK. 2010. The Kennedy Pathway-De Novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life. 62:414–428.
  • McMaster CR, Bell RM. 1997. CDP-choline:1,2-diacylglycerol cholinephosphotransferase. Biochim Biophys Acta, Lipids Lipid Metab. 1348:100–110.
  • Scheible H, Kraetzer F, Marx A, Johne A, Wimmer E. 2017. Metabolism of the MEK1/2 inhibitor pimasertib involves a novel conjugation with phosphoethanolamine in patients with solid tumors. Drug Metab Dispos. 45:174–182.
  • von Richter O, Massimini G, Scheible H, Udvaros I, Johne A. 2016. Pimasertib, a selective oral MEK1/2 inhibitor: absolute bioavailability, mass balance, elimination route, and metabolite profile in cancer patients. Br J Clin Pharmacol. 82:1498–1508.
  • Zhuo XL, Cantone JL, Wang Y, Leet JE, Drexler DM, Yeung KS, Huang XS, Eastman KJ, Parcella KE, Mosure KW, et al. 2016. Phosphocholine conjugation: an unexpected in vivo conjugation pathway associated with hepatitis C NS5B inhibitors featuring A bicyclo 1.1.1 pentane. Drug Metab Dispos. 44:1332–1340.
  • Zollinger M, Sayer C, Dannecker R, Schuler W, Sedrani R. 2008. The macrolide everolimus forms an unusual metabolite in animals and humans: identification of a phosphocholine ester. Drug Metab Dispos. 36:1457–1460.

References

  • Cnubben NHP, Vervoort J, Boersma MG, Rietjens I. 1995. The effect of varying halogen substituent patterns on the cytochrome-P450 catalyzed dehalogenation of 4-halogenated anilines to 4-aminophenol metabolites. Biochem Pharmacol. 49:1235–1248.
  • Fleming FF, Yao LH, Ravikumar PC, Funk L, Shook BC. 2010. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem. 53:7902–7917.
  • Lam LKM, Zhang ZC, Board PG, Xun LY. 2012. Reduction of benzoquinones to hydroquinones via spontaneous reaction with glutathione and enzymatic reaction by S-glutathionyl-hydroquinone reductases. Biochemistry. 51:5014–5021.
  • Rietjens I, Tyrakowska B, Veeger C, Vervoort J. 1990. Reaction pathways for biodehalogenation of fluorinated anilines. Eur J Biochem. 194:945–954.

References

  • Chen L, Mulder PPJ, Louisse J, Peijnenburg A, Wesseling S, Rietjens I. 2017. Risk assessment for pyrrolizidine alkaloids detected in (herbal) teas and plant food supplements. Regul Toxicol Pharmacol. 86:292–302.
  • Knutsen HK, Alexander J, Barregard L, Bignami M, Bruschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, et al. 2017. Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFS2. 15.
  • Lin G, Wang JY, Li N, Li M, Gao H, Ji YA, Zhang F, Wang HL, Zhou Y, Ye Y, et al. 2011. Hepatic sinusoidal obstruction syndrome associated with consumption of Gynura segetum. J Hepatol. 54:666–673.
  • Mattocks AR, White INH. 1970. Estimation of metabolites of pyrrolizidine alkaloids in animal tissues. Anal Biochem. 38:529–535.
  • Merz K-H, Schrenk D. 2016. Interim relative potency factors for the toxicological risk assessment of pyrrolizidine alkaloids in food and herbal medicines. Toxicol Lett. 263:44–57.
  • Ruan JQ, Gao H, Li N, Xue JY, Chen J, Ke CQ, Ye Y, Fu PPC, Zheng J, Wang JY, et al. 2015. Blood pyrrole-protein adducts-a biomarker of pyrrolizidine alkaloid-induced liver injury in humans. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 33:404–421.
  • Yan CC, Huxtable RJ. 1995. Relationship between glutathione concentration and metabolism of the pyrrolizidine alkaloid, monocrotaline, in the isolated, perfused liver. Toxicol Appl Pharmacol. 130:132–139.
  • Yang XJ, Li WW, Sun Y, Guo XC, Huang WL, Peng Y, Zheng J. 2017. Comparative study of hepatotoxicity of pyrrolizidine alkaloids retrorsine and monocrotaline. Chem Res Toxicol. 30:532–539.

References

  • Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF, Kipps TJ, Anderson MA, Brown JR, GressickL, et al. 2016. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 374:311–322.
  • Zachariah PK, Juchau MR. 1974. The role of gut flora in the reduction of aromatic nitro-groups. Drug Metab Dispos. 2:74–78.

References

  • Darnell M, Breitholtz K, Isin EM, Jurva U, Weidolf L. 2015. Significantly different covalent binding of oxidative metabolites, Acyl glucuronides, and S-Acyl CoA conjugates formed from xenobiotic carboxylic acids in human liver microsomes. Chem Res Toxicol. 28:886–896.
  • Stieger B, Mahdi ZM. 2017. Model systems for studying the role of canalicular efflux transporters in drug-induced cholestatic liver disease. J Pharm Sci. 106:2295–2301.
  • Thompson RA, Isinm EM, Li Y, Weidolf L, Page K, Wilson I, Swallow S, Middleton B, Stahl S, Foster AJ, et al. 2012. In vitro approach to assess the potential for risk of idiosyncratic adverse reactions caused by candidate drugs. Chem Res Toxicol. 25:1616–1632.
  • Van Vleet TR, Liu H, Lee A, Blomme EAG. 2017. Acyl glucuronide metabolites: implications for drug safety assessment. Toxicol Lett. 272:1–7.

References

References

  • Bull JA, Croft RA, Davis OA, Doran R, Morgan KF. 2016. Oxetanes: recent advances in synthesis, reactivity, and medicinal chemistry. Chem Rev. 116:12150–12233.
  • Kitteringham NR, Davis C, Howard N, Pirmohamed M, Park BK. 1996. Interindividual and interspecies variation in hepatic microsomal epoxide hydrolase activity: studies with cis-stilbene oxide, carbamazepine 10, 11-epoxide and naphthalene. J Pharmacol Exp Ther. 278:1018–1027.
  • Li X-Q, Hayes MA, Grönberg G, Berggren K, Castagnoli N, Weidolf L. 2016. Discovery of a novel microsomal epoxide hydrolase–catalyzed hydration of a spiro oxetane. Drug Metab Dispos. 44:1341–1348.
  • Morisseau C, Hammock BD. 2005. Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Annu Rev Pharmacol Toxicol. 45:311–333.
  • Rioux N, Duncan KW, Lantz RJ, Miao X, Chan-Penebre E, Moyer MP, Munchhof MJ, Copeland RA, Chesworth R, Waters NJ. 2016. Species differences in metabolism of EPZ015666, an oxetane-containing protein arginine methyltransferase-5 (PRMT5) inhibitor. Xenobiotica. 46:268–277.
  • Stepan AF, Karki K, McDonald WS, Dorff PH, Dutra JK, Dirico KJ, Won A, Subramanyam C, Efremov IV, O’Donnell CJ, et al. 2011. Metabolism-directed design of oxetane-containing arylsulfonamide derivatives as γ-secretase inhibitors. J Med Chem. 54:7772–7783.
  • Toselli F, Fredenwall M, Svensson P, Li X-Q, Johansson A, Weidolf L, Hayes MA. 2017. Oxetane substrates of human microsomal epoxide hydrolase. Drug Metab Dispos. 45:966–973.
  • Wuitschik G, Carreira EM, Wagner B, Fischer H, Parrilla I, Schuler F, Rogers-Evans M, Müller K. 2010. Oxetanes in drug discovery: structural and synthetic insights. J Med Chem. 53:3227–3246.

References

  • Campagna-Slater V, Pottel J, Therrien E, Cantin L-D, Moitessier N. 2012. Development of a computational tool to rival experts in the prediction of sites of metabolism of xenobiotics by P450s. J Chem Inf Model. 52:2471–2483.
  • Fang Z-Z, Krausz KW, Li F, Cheng J, Tanaka N, Gonzalez FJ. 2012. Metabolic map and bioactivation of the anti-tumour drug noscapine. Br J Pharmacol. 167:1271–1286.
  • Fitch WC, Chen Y, Liu L, Paehler A, Young M. 2010. Application of modern drug metabolism structure determination tools and assays to the in vitro metabolism of imiloxan. DML. 4:77–87.
  • Hughes TB, Swamidass SJ. 2017. Deep learning to predict the formation of quinone species in drug metabolism. Chem Res Toxicol. 30:642–656.
  • Kirchmair J, Williamson MJ, Tyzack JD, Tan L, Bond PJ, Bender A, Glen RC. 2012. Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms. J Chem Inf Model. 52:617–648.
  • Li X, He Y, Ruiz CH, Koenig M, Cameron MD. 2009. Characterization of Dasatinib and its structural analogs as CYP3A4 mechanism-based inactivators and the proposed bioactivation pathways. Drug Metab Dispos. 37:1242–1250.
  • Mahajan MK, Uttamsingh V, Daniels JS, Gan L-S, LeDuc BW, Williams DA. 2011. In vitro metabolism of oxymetazoline: evidence for bioactivation to a reactive metabolite. Drug Metab Dispos. 39:693–702.
  • Meng J, Li S, Liu X, Zheng M, Li H. 2017. RD-Metabolizer: an integrated and reaction types extensive approach to predict metabolic sites and metabolites of drug-like molecules. Chem Cent J. 11:65.
  • Meyer MD, Du P, Schuster F, Maurer HH. 2010. Studies on the metabolism of the α-pyrrolidinophenone designer drug methylenedioxy-pyrovalerone (MDPV) in rat and human urine and human liver microsomes using GC-MS and LC-high-resolution MS and its detectability in urine by GC-MS. J Mass Spectrom. 45:1426–1442.
  • Numazawa MY, Yoshimura A. 1999. Biological aromatization of delta4,6- and delta1,4,6-androgens and their 6-alkyl analogs, potent inhibitors of aromatase. J Steroid Biochem Mol Biol. 70:189–196.
  • Rydberg P, Gloriam DE, Zaretzki J, Breneman C, Olsen L. 2010. SMARTCyp: a 2D method for prediction of cytochrome P450-mediated drug metabolism. ACS Med Chem Lett. 1:6–100.
  • Srivastava A, Maggs JL, Antoine DJ, Williams DP, Smith DA, Park BK. 2010. Role of reactive metabolites in drug-induced hepatotoxicity. In: Uetrecht J, editor. Adverse drug reactions. Berlin, Heidelberg: Springer; pp. 165–194.
  • Srivastava A, Ramachandran S, Hameed SP, Ahuja V, Hosagrahara VP. 2014. Identification and mitigation of a reactive metabolite liability associated with aminoimidazoles. Chem Res Toxicol. 27:1586–1597.
  • Stepan AF, Walker DP, Bauman J, Price DA, Baillie TA, Kalgutkar AS, Aleo MD. 2011. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem Res Toxicol. 24:1345–1410.
  • Testa B, Pedretti A, Vistoli G. 2012. Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discov Today. 17:549–560.
  • Wen B, Zhou M. 2009. Metabolic activation of the phenothiazine antipsychotics chlorpromazine and thioridazine to electrophilic iminoquinone species in human liver microsomes and recombinant P450s. Chem Biol Interact. 181:220–226.
  • Zaretzki J, Bergeron C, Huang T-W, Rydberg P, Swamidass SJ, Breneman CM. 2013. RS-WebPredictor: a server for predicting CYP-mediated sites of metabolism on drug-like molecules. Bioinformatics. 29:497–498.
  • Zaretzki J, Matlock M, Swamidass SJ. 2013. XenoSite: accurately predicting CYP-mediated sites of metabolism with neural networks. J Chem Inf Model. 53:3373–3383.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.