510
Views
45
CrossRef citations to date
0
Altmetric
Review Article

Insights into the intestinal bacterial metabolism of flavonoids and the bioactivities of their microbe-derived ring cleavage metabolites

, , &
Pages 343-356 | Received 11 May 2018, Accepted 01 Jun 2018, Published online: 16 Jul 2018

References

  • An LJ, Guan S, Shi GF, Bao YM, Duan YL, Jiang B. 2006. Protocatechuic acid from Alpinia oxyphylla against MPP + induced neurotoxicity in PC12 cells. Food Chem Toxicol. 44:436–443.
  • Aura AM, Martin-Lopez P, O’Leary KA, Williamson G, Oksman-Caldentey KM, Poutanen K, Santos-Buelga C. 2005. In vitro metabolism of anthocyanins by human gut microflora. Eur J Nutr. 44:133–142.
  • Beekmann K, Actis-Goretta L, van Bladeren PJ, Dionisi F, Destaillats F, Rietjens IMCM. 2012. A state-of-the-art overview of the effect of metabolic conjugation on the biological activity of flavonoids. Food Funct. 3:1008.
  • Blair RM, Appt SE, Franke AA, Clarkson TB. 2003. Treatment with antibiotics reduces plasma equol concentration in cynomolgus monkeys (Macaca fascicularis) [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. J Nutr.133:2262–2267.
  • Booth AN, Deeds F, Jones FT, Murray CW. 1956. The metabolic fate of rutin and quercetin in the animal body. J Biol Chem. 223:251–257.
  • Booth AN, Jones FT, De EF. 1958. Metabolic fate of hesperidin, eriodictyol, homoeridictyol, and diosmin. J Biol Chem. 230:661–668.
  • Braune A, Engst W, Blaut M. 2005. Degradation of neohesperidin dihydrochalcone by human intestinal bacteria. J Agric Food Chem. 53:1782–1790.
  • Braune A, Gutschow M, Engst W, Blaut M. 2001. Degradation of quercetin and luteolin by Eubacterium ramulus. Appl Environ Microbiol. 67:5558–5567.
  • Carrasco-Pozo C, Gotteland M, Castillo RL, Chen C. 2015. 3,4-Dihydroxyphenylacetic acid, a microbiota-derived metabolite of quercetin, protects against pancreatic beta-cells dysfunction induced by high cholesterol [Research Support, Non-U.S. Gov't]. Exp Cell Res. 334:270–282.
  • Cassidy A, Minihane A-M. 2017. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr. 105:10–22.
  • Chang YC, Nair MG. 1995. Metabolism of daidzein and genistein by intestinal bacteria. J Nat Prod. 58:1892–1896.
  • Chen Y, Li Q, Zhao T, Zhang Z, Mao G, Feng W, Wu X, Yang L. 2017. Biotransformation and metabolism of three mulberry anthocyanin monomers by rat gut microflora. Food Chem. 237:887–894.
  • Choi EJ, Kim GH. 2014. The antioxidant activity of daidzein metabolites, O-desmethylangolensin and equol, in HepG2 cells [Research Support, Non-U.S. Gov't]. Mol Med Rep. 9:328–332.
  • Coldham NG, Howells LC, Santi A, Montesissa C, Langlais C, King LJ, Macpherson DD, Sauer MJ. 1999. Biotransformation of genistein in the rat: elucidation of metabolite structure by product ion mass fragmentology. J Steroid Biochem Mol Biol. 70:169–184.
  • Das S, Rosazza JP. 2006. Microbial and enzymatic transformations of flavonoids. J Nat Prod. 69:499–508.
  • Duda-Chodak A, Tarko T, Satora P, Sroka P. 2015. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr. 54:325–341.
  • Faria A, Fernandes I, Norberto S, Mateus N, Calhau C. 2014. Interplay between anthocyanins and gut microbiota. J Agric Food Chem. 62:6898–6902.
  • Fernández-Millán E, Ramos S, Alvarez C, Bravo L, Goya L, Martín MÁ. 2014. Microbial phenolic metabolites improve glucose-stimulated insulin secretion and protect pancreatic beta cells against tert-butyl hydroperoxide-induced toxicity via ERKs and PKC pathways. Food Chem Toxicol. 66:245–253.
  • Flint HJ, Scott KP, Louis P, Duncan SH. 2012. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 9:577–589.
  • Forester SC, Choy YY, Waterhouse AL, Oteiza PI. 2014. The anthocyanin metabolites gallic acid, 3-O-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde decrease human colon cancer cell viability by regulating pro-oncogenic signals. Mol Carcinog. 53:432–439.
  • Forester SC, Waterhouse AL. 2010. Gut metabolites of anthocyanins, gallic acid, 3-O-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde, inhibit cell proliferation of Caco-2 Cells. J Agric Food Chem. 58:5320–5327.
  • Gasperotti M, Masuero D, Guella G, Mattivi F, Vrhovsek U. 2014. Development of a targeted method for twenty-three metabolites related to polyphenol gut microbial metabolism in biological samples, using SPE and UHPLC-ESI-MS/MS. Talanta. 128:221–230.
  • Gasperotti M, Passamonti S, Tramer F, Masuero D, Guella G, Mattivi F, Vrhovsek U. 2015. Fate of microbial metabolites of dietary polyphenols in rats: is the brain their target destination? ACS Chem Neurosci. 6:1341–1352.
  • Gläszer G, Graefe EU, Struck F, Veit M, Gebhardt R. 2002. Comparison of antioxidative capacities and inhibitory effects on cholesterol biosynthesis of quercetin and potential metabolites [comparative study]. Phytomed. 9:33–40.
  • Gonzalez-Barrio R, Edwards CA, Crozier A. 2011. Colonic Catabolism of ellagitannins, ellagic acid, and raspberry anthocyanins: in vivo and in vitro studies. Drug Metab Dispos. 39:1680–1688.
  • Griffiths LA, Barrow A. 1972. Metabolism of flavonoid compounds in germ-free rats. Biochem J. 130:1161–1162.
  • Griffiths LA, Smith GE. 1972a. Metabolism of apigenin and related compounds in the rat. Metabolite formation in vivo and by the intestinal microflora in vitro. Biochem J. 128:901–911.
  • Griffiths LA, Smith GE. 1972b. Metabolism of myricetin and related compounds in the rat. Metabolite formation in vivo and by the intestinal microflora in vitro. Biochem J. 130:141–151.
  • Gross G, Jacobs DM, Peters S, Possemiers S, van Duynhoven J, Vaughan EE, van de Wiele T. 2010. In vitro bioconversion of polyphenols from black tea and red wine/grape juice by human intestinal microbiota displays strong interindividual variability. J Agric Food Chem. 58:10236–10246.
  • Gross M, Pfeiffer M, Martini M, Campbell D, Slavin J, Potter J. 1996. The quantitation of metabolites of quercetin flavonols in human urine. Cancer Epidemiol Biomarkers Prev. 5:711–720.
  • Hanske L, Loh G, Sczesny S, Blaut M, Braune A. 2010. Recovery and metabolism of xanthohumol in germ-free and human microbiota-associated rats. Mol Nutr Food Res. 54:1405–1413.
  • Herath W, Ferreira D, Khan SI, Khan IA. 2003. Identification and biological activity of microbial metabolites of xanthohumol. Chem Pharm Bull. 51:1237–1240.
  • Hur H-G, Lay JO, Jr Beger RD, Freeman JP, Rafii F. 2000. Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Arch Microbiol.174:422–428.
  • Hur HG, Beger RD, Heinze TM, Lay JO, Jr., Freeman JP, Dore J, Rafii F. 2002. Isolation of an anaerobic intestinal bacterium capable of cleaving the C-ring of the isoflavonoid daidzein. Arch Microbiol. 178:75–12.
  • Joannou GE, Kelly GE, Reeder AY, Waring M, Nelson C. 1995. A urinary profile study of dietary phytoestrogens. The identification and mode of metabolism of new isoflavonoids. J Steroid Biochem Mol Biol. 54:167–184.
  • Kelly GE, Joannou GE, Reeder AY, Nelson C, Waring MA. 1995. The variable metabolic response to dietary isoflavones in humans. Proc Soc Exp Biol Med. 208:40–43.
  • Kelly GE, Nelson C, Waring MA, Joannou GE, Reeder AY. 1993. Metabolites of dietary (soya) isoflavones in human urine. Clin Chim Acta. 223:9–22.
  • Kim DH, Han SB, Bae EA, Han MJ. 1996. Intestinal bacterial metabolism of rutin and its relation to mutagenesis. Arch Pharm Res. 19:41–45.
  • Kim M, Kim N, Han J. 2014. Metabolism of Kaempferia parviflora polymethoxyflavones by human intestinal bacterium Bautia sp. MRG-PMF1. J Agric Food Chem. 62:12377–12383.
  • Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R. 2003. Analysis and biological activities of anthocyanins. Phytochemistry. 64:923–933.
  • Kozłowska A, Szostak-Wegierek D. 2014. Flavonoids-food sources and health benefits. Rocz Panstw Zakl Hig. 65:79–85.
  • Krishnamurty HG, Cheng KJ, Jones GA, Simpson FJ, Watkin JE. 1970. Identification of products produced by the anaerobic degradation of rutin and related flavonoids by Butyrivibrio sp. C3. Can J Microbiol. 16:759–767.
  • Krumholz LR, Crawford RL, Hemling ME, Bryant MP. 1986. A rumen bacterium degrading quercetin and trihydroxybenzenoids with concurrent use of formate or H2. Prog Clin Biol Res. 213:211–214.
  • Kumar S, Pandey AK. 2013. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal. 2013:162750.
  • López de las Hazas M-C, Mosele JI, Macià A, Ludwig IA, Motilva M-J. 2017. Exploring the colonic metabolism of grape and strawberry anthocyanins and their in vitro apoptotic effects in HT-29 colon cancer cells. J Agric Food Chem. 65:6477–6487.
  • Labib S, Erb A, Kraus M, Wickert T, Richling E. 2004. The pig caecum model: a suitable tool to study the intestinal metabolism of flavonoids. Mol Nutr Food Res. 48:326–332.
  • Larrosa M, Luceri C, Vivoli E, Pagliuca C, Lodovici M, Moneti G, Dolara P. 2009. Polyphenol metabolites from colonic microbiota exert anti-inflammatory activity on different inflammation models [Research Support, Non-U.S. Gov't]. Mol Nutr Food Res. 53:1044–1054.
  • Ludwig IA, Mena P, Calani L, Borges G, Pereira-Caro G, Bresciani L, Del Rio D, Lean MEJ, Crozier A. 2015. New insights into the bioavailability of red raspberry anthocyanins and ellagitannins. Free Radic Biol Med. 89:758–769.
  • Manigandan K, Manimaran D, Jayaraj RL, Elangovan N, Dhivya V, Kaphle A. 2015. Taxifolin curbs NF-κB-mediated Wnt/β-catenin signaling via up-regulating Nrf2 pathway in experimental colon carcinogenesis. Biochimie. 119:103–112.
  • Matthies A, Loh G, Blaut M, Braune A. 2012. Daidzein and genistein are converted to equol and 5-hydroxy-equol by human intestinal Slackia isoflavoniconvertens in gnotobiotic rats. J Nutr. 142:40–46.
  • Merfort I, Heilmann J, Weiss M, Pietta P, Gardana C. 1996. Radical scavenger activity of three flavonoid metabolites studied by inhibition of chemiluminescence in human PMNs. Planta Med. 62:289–292.
  • Monagas M, Khan N, Andres-Lacueva C, Urpi-Sarda M, Vazquez-Agell M, Lamuela-Raventos RM, Estruch R. 2009. Dihydroxylated phenolic acids derived from microbial metabolism reduce lipopolysaccharide-stimulated cytokine secretion by human peripheral blood mononuclear cells [Research Support, Non-U.S. Gov't]. BJN. 102:201–206.
  • Nikolic D, Li Y, Chadwick LR, Pauli GF, van Breemen RB. 2005. Metabolism of xanthohumol and isoxanthohumol, prenylated flavonoids from hops (Humulus lupulus L.), by human liver microsomes. J Mass Spectrom. 40:289–299.
  • Nookandeh A, Frank N, Steiner F, Ellinger R, Schneider B, Gerhäuser C, Becker H. 2004. Xanthohumol metabolites in faeces of rats. Phytochemistry. 65:561–570.
  • O'Toole PW. 2012. Changes in the intestinal microbiota from adulthood through to old age. Clin Microbiol Infect. 18:44–46.
  • Orrego-Lagaron N, Martinez-Huelamo M, Vallverdu-Queralt A, Lamuela-Raventos RM, Escribano-Ferrer E. 2015. High gastrointestinal permeability and local metabolism of naringenin: influence of antibiotic treatment on absorption and metabolism. Br J Nutr. 114:169–180.
  • Pavlica S, Gebhardt R. 2010. Protective effects of flavonoids and two metabolites against oxidative stress in neuronal PC12 cells [Research Support, Non-U.S. Gov't]. Life Sci. 86:79–86.
  • Rafii F. 2015. The role of colonic bacteria in the metabolism of the natural isoflavone daidzin to equol. Metabolites. 5:56–73.
  • Rechner AR, Smith MA, Kuhnle G, Gibson GR, Debnam ES, Srai SKS, Moore KP, Rice-Evans CA. 2004. Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radic Biol Med. 36:212–225.
  • Rechner AR, Kroner C. 2005. Anthocyanins and colonic metabolites of dietary polyphenols inhibit platelet function [Research Support, Non-U.S. Gov't]. Thromb Res. 116:327–334.
  • Rechner AR, Kuhnle G, Bremner P, Hubbard GP, Moore KP, Rice-Evans CA. 2002. The metabolic fate of dietary polyphenols in humans. Free Radic Biol Med. 33:220–235.
  • Rowland IR, Wiseman H, Sanders TAB, Adlercreutz H, Bowey EA. 2000. Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora. Nutr Cancer. 36:27–32.
  • Rufer CE, Kulling SE. 2006. Antioxidant activity of isoflavones and their major metabolites using different in vitro assays [Comparative Study Research Support, Non-U.S. Gov't]. J Agric Food Chem. 54:2926–2931.
  • Sakakibara H, Viala D, Ollier A, Combeau A, Besle JM. 2004. Isoflavones in several clover species and in milk from goats fed clovers. Biofactors. 22:237–239.
  • Schneider H, Blaut M. 2000. Anaerobic degradation of flavonoids by Eubacterium ramulus. Arch Microbiol. 173:71–75.
  • Schneider H, Schwiertz A, Collins MD, Blaut M. 1999. Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Arch Microbiol. 171:81–91.
  • Schoefer L, Mohan R, Braune A, Birringer M, Blaut M. 2002. Anaerobic C-ring cleavage of genistein and daidzein by Eubacterium ramulus. FEMS Microbiol Lett. 208:197–202.
  • Schoefer L, Mohan R, Schwiertz A, Braune A, Blaut M. 2003. Anaerobic degradation of flavonoids by Clostridium orbiscindens. Appl Environ Microbiol. 69:5849–5854.
  • Serafini M, Peluso I, Raguzzini A. 2010. Flavonoids as anti-inflammatory agents. Proc Nutr Soc. 69:273–278.
  • Serra A, Macià A, Romero M-P, Reguant J, Ortega N, Motilva M-J. 2012. Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chem. 130:383–393.
  • Setchell KD, Clerici C. 2010. Equol: history, chemistry, and formation. J Nutr. 140:1355S–1362S.
  • Setchell KDR, Clerici C, Lephart ED, Cole SJ, Heenan C, Castellani D, Wolfe BE, Nechemias-Zimmer L, Brown NM, Lund TD, et al. 2005. S-equol, a potent ligand for estrogen receptor beta, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora. Am J Clin Nutr. 81:1072–1079.
  • Shi GF, An LJ, Jiang B, Guan S, Bao YM. 2006. Alpinia protocatechuic acid protects against oxidative damage in vitro and reduces oxidative stress in vivo. Neurosci Lett. 403:206–210.
  • Shin NR, Moon JS, Shin SY, Li L, Lee YB, Kim TJ, Han NS. 2016. Isolation and characterization of human intestinal Enterococcus avium EFEL009 converting rutin to quercetin. Lett Appl Microbiol. 62:68–74.
  • Su KY, Yu CY, Chen YP, Hua KF, Chen YL. 2014. 3,4-Dihydroxytoluene, a metabolite of rutin, inhibits inflammatory responses in lipopolysaccharide-activated macrophages by reducing the activation of NF-kappaB signaling [Research Support, Non-U.S. Gov't]. BMC Complement Altern Med. 14:21.
  • Sutherland JB, Bridges BM, Heinze TM, Adams MR, Delio PJ, Hotchkiss C, Rafii F. 2012. Comparison of the effects of antimicrobial agents from three different classes on metabolism of isoflavonoids by colonic microflora using Etest strips [Comparative Study Research Support, U.S. Gov't, Non-P.H.S.]. Curr Microbiol. 64:60–65.
  • Takagaki A, Nanjo F. 2015. Effects of metabolites produced from (-)-epigallocatechin gallate by rat intestinal bacteria on angiotensin I-converting enzyme activity and blood pressure in spontaneously hypertensive rats. J Agric Food Chem. 63:8262–8266.
  • Tamura M, Tsushida T, Shinohara K. 2007. Isolation of an isoflavone-metabolizing, Clostridium-like bacterium, strain TM-40, from human faeces. Anaerobe. 13:32–35.
  • Tanaka T. 2014. Flavonoids for allergic diseases: present evidence and future perspective. Curr Pharm Des. 20:879–885.
  • Thilakarathna SH, Rupasinghe HP. 2013. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients. 5:3367–3387.
  • Thursby E, Juge N. 2017. Introduction to the human gut microbiota. Biochem J. 474:1823–1836.
  • Tsuchihashi R, Sakamoto S, Kodera M, Nohara T, Kinjo J. 2008. Microbial metabolism of soy isoflavones by human intestinal bacterial strains. J Nat Med. 62:456–460.
  • Waldecker M, Kautenburger T, Daumann H, Busch C, Schrenk D. 2008. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon [Research Support, Non-U.S. Gov't]. J Nutr Biochem. 19:587–593.
  • Wang XL, Hur HG, Lee JH, Kim KT, Kim SI. 2005. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl Environ Microbiol. 71:214–219.
  • Wang XL, Kim HJ, Kang SI, Kim SI, Hur HG. 2007. Production of phytoestrogen S-equol from daidzein in mixed culture of two anaerobic bacteria. Arch Microbiol. 187:155–160.
  • Weidmann AE. 2012. Dihydroquercetin: more than just an impurity? Eur J Pharmacol. 684:19–26.
  • Winter J, Popoff MR, Grimont P, Bokkenheuser VD. 1991. Clostridium orbiscindens sp. nov., a human intestinal bacterium capable of cleaving the flavonoid C-ring [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Int J Syst Evol Microbiol. 41:459–357.
  • Xiao J, Hogger P. 2013. Metabolism of dietary flavonoids in liver microsomes. Curr Drug Metab. 14:381–391.
  • Xie Y, Yang W, Tang F, Chen X, Ren L. 2015. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem. 22:132–149.
  • Xiu-Ling W, Ki-Tae K, Je-Hyeon L, Hor-Gil H, Andsu-Il K. 2004. C-ring cleavage of isoflavones daidzein and genistein by a newly-isolated human intestinal bacterium Eubacterium ramulus Julong 601. J Microbiol Biotechnol. 14:766–771.
  • Xue H, Xie W, Jiang Z, Wang M, Wang J, Zhao H, Zhang X. 2016. 3,4-Dihydroxyphenylacetic acid, a microbiota-derived metabolite of quercetin, attenuates acetaminophen (APAP)-induced liver injury through activation of Nrf-2. Xenobiotica. 46:931–939.
  • Yasuda T, Ueda J, Ohsawa K. 2001. Urinary metabolites of genistein administered orally to rats. Chem Pharm Bull. 49:1495–1497.
  • Yilmazer M, Stevens JF, Deinzer ML, Buhler DR. 2001. In vitro biotransformation of xanthohumol, a flavonoid from hops (Humulus lupulus), by rat liver microsomes. Drug Metab Dispos. 29:223–231.
  • Zhang H-N, An C-N, Zhang H-N, Pu X-P. 2010. Protocatechuic acid inhibits neurotoxicity induced by MPTP in vivo. Neurosci Lett. 474:99–103.
  • Zhang L, Zuo Z, Lin G. 2007. Intestinal and hepatic glucuronidation of flavonoids. Mol Pharm. 4:833–845.
  • Zhang X, Yang Y, Wu Z, Weng P. 2016. The modulatory effect of anthocyanins from purple sweet potato on human intestinal microbiota in vitro. J Agric Food Chem. 64:2582–2590.
  • Zou W, Luo Y, Liu M, Chen S, Wang S, Nie Y, Cheng G, Su W, Zhang K. 2014. Human intestinal microbial metabolism of naringin. Eur J Drug Metab Pharmacokinet. 40:363–367.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.