863
Views
33
CrossRef citations to date
0
Altmetric
Review Articles

Pharmacology of apocynin: a natural acetophenone

, ORCID Icon & ORCID Icon
Pages 542-562 | Received 27 Nov 2020, Accepted 22 Feb 2021, Published online: 10 Mar 2021

References

  • Abiko T, Abiko A, Clermont AC, Shoelson B, Horio N, Takahashi J, Adamis AP, King GL, Bursell S-E. 2003. Characterization of retinal leukostasis and hemodynamics in insulin resistance and diabetes: role of oxidants and protein kinase-C activation. Diabetes. 52(3):829–837.
  • Akiyama SI, Furukawa T, Sumizawa T, Takebayashi Y, Nakajima Y, Shimaoka S, Haraguchi M. 2004. The role of thymidine phosphorylase, an angiogenic enzyme, in tumor progression. Cancer Sci. 95(11):851–857.
  • Altmann C, Schmidt MHH. 2018. The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neurodegeneration. Int J Mol Sci. 19(1):110.
  • Aman RM, Abu Hashim II, Meshali MM. 2018. Novel chitosan-based solid-lipid nanoparticles to enhance the bio-residence of the miraculous phytochemical “Apocynin”. Eur J Pharm Sci. 124:304–318.
  • Anter HM, Hashim IIA, Awadin W, Meshali MM. 2019. Novel chitosan oligosaccharide-based nanoparticles for gastric mucosal administration of the phytochemical “apocynin”. Int J Nanomedicine. 14:4911–4929.
  • Anusornvongchai T, Nangaku M, Jao TM, Wu CH, Ishimoto Y, Maekawa H, Tanaka T, Shimizu A, Yamamoto M, Suzuki N, et al. 2018. Palmitate deranges erythropoietin production via transcription factor ATF4 activation of unfolded protein response. Kidney Int. 94(3):536–550.
  • Bai X, Li X, Tian J, Xu L, Wan J, Liu Y. 2018. A new model of diabetic nephropathy in C57BL/6 mice challenged with advanced oxidation protein products. Free Radic Biol Med. 118:71–84.
  • Bánfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH. 2004. NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem. 279(44):46065–46072.
  • Barbieri SS, Cavalca V, Eligini S, Brambilla M, Caiani A, Tremoli E, Colli S. 2004. Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox-dependent mechanisms. Free Radic Biol Med. 37(2):156–165.
  • Beckman JS, Beckman TW, Chen J, Marshall PA. 1990. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA. 87(4):1620–1624.
  • Bedard K, Krause KH. 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 87(1):245–313.
  • Block K, Gorin Y. 2012. Aiding and abetting roles of NOX oxidases in cellular transformation. Nat Rev Cancer. 12(9):627–637.
  • Brader S, Eccles SA. 2004. Phosphoinositide 3-kinase signalling pathways in tumor progression, invasion and angiogenesis. Tumori. 90(1):2–8.
  • Brenza TM, Ghaisas S, Ramirez JEV, Harischandra D, Anantharam V, Kalyanaraman B, Kanthasamy AG, Narasimhan B. 2017. Neuronal protection against oxidative insult by polyanhydride nanoparticle-based mitochondria-targeted antioxidant therapy. Nanomedicine. 13(3):809–820.
  • Brenza TM, Schlichtmann BW, Bhargavan B, Vela Ramirez JE, Nelson RD, Panthani MG, McMillan JEM, Kalyanaraman B, Gendelman HE, Anantharam V, et al. 2018. Biodegradable polyanhydride-based nanomedicines for blood to brain drug delivery. J Biomed Mater Res. 106(11):2881–2890.
  • Bronckaers A, Gago F, Balzarini J, Liekens S. 2009. The dual role of thymidine phosphorylase in cancer development and chemotherapy. Med Res Rev. 29(6):903–953.
  • Brown DI, Griendling KK. 2009. Nox proteins in signal transduction. Free Radic Biol Med. 47(9):1239–1253.
  • Brown NS, Jones A, Fujiyama C, Harris AL, Bicknell R. 2000. Thymidine phosphorylase induces carcinoma cell oxidative stress and promotes secretion of angiogenic factors. Cancer Res. 60(22):6298–6302.
  • Buvelot H, Jaquet V, Krause KH. 2019. Mammalian NADPH oxidases. Methods Mol Biol. 1982:17–36.
  • Camilleri A, Vassallo N. 2014. The centrality of mitochondria in the pathogenesis and treatment of Parkinson’s disease. CNS Neurosci Ther. 20(7):591–602.
  • Chaffer CL, Weinberg RA. 2011. A perspective on cancer cell metastasis. Science. 331(6024):1559–1564.
  • Chen J, Chen JK, Harris RC. 2015. EGF receptor deletion in podocytes attenuates diabetic nephropathy. J Am Soc Nephrol. 26(5):1115–1125.
  • Chen P, Guo AM, Edwards PA, Trick G, Scicli AG. 2007. Role of NADPH oxidase and ANG II in diabetes-induced retinal leukostasis. Am J Physiol - Regul Integr Comp Physiol. 293(4):R1619–R1629.
  • Chen X, Touyz RM, Park JB, Schiffrin EL. 2001. Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension. 38(3):606–611.
  • Cheng L, Chen L, Wei X, Wang Y, Ren Z, Zeng S, Zhang X. 2018. NOD2 promotes dopaminergic degeneration regulated by NADPH oxidase 2 in 6-hydroxydopamine model of Parkinson’s disease. J Neuroinflamm. 15(1):243.
  • Chocry M, Leloup L. 2020. The NADPH oxidase family and its inhibitors. Antioxidants Redox Signal. 33(5):332–353.
  • Choi BY, Jang BG, Kim JH, Lee BE, Sohn M, Song HK, Suh SW. 2012. Prevention of traumatic brain injury-induced neuronal death by inhibition of NADPH oxidase activation. Brain Res. 1481:49–58.
  • Ciarcia R, Damiano S, Florio A, Spagnuolo M, Zacchia E, Squillacioti C, Mirabella N, Florio S, Pagnini U, Garofano T, et al. 2015. The protective effect of apocynin on cyclosporine A-induced hypertension and nephrotoxicity in rats. J Cell Biochem. 116(9):1848–1856.
  • Clark RA, Volpp BD, Leidal KG, Nauseef WM. 1990. Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J Clin Invest. 85(3):714–721.
  • Codolo G, Plotegher N, Pozzobon T, Brucale M, Tessari I, Bubacco L, de Bernard M. 2013. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLoS One. 8(1):e55375.
  • Costa CA, Amaral TAS, Carvalho LCRM, Ognibene DT, Da Silva AFE, Moss MB, Valença SS, De Moura RS, Resende ÂC. 2009. Antioxidant treatment with tempol and apocynin prevents endothelial dysfunction and development of renovascular hypertension. Am J Hypertens. 22(12):1242–1249.
  • Daly JW, Axelrod J, Witkop B. 1960. Dynamic aspects of enzymatic O-methylation and -demethylation of catechols in vitro and in vivo. J Biol Chem. 235(4):1155–1159.
  • Dang DK, Shin EJ, Nam Y, Ryoo S, Jeong JH, Jang CG, Nabeshima T, Hong JS, Kim HC. 2016. Apocynin prevents mitochondrial burdens, microglial activation, and pro-apoptosis induced by a toxic dose of methamphetamine in the striatum of mice via inhibition of p47phox activation by ERK. J Neuroinflammation. 13(1):12.
  • Dranka BP, Gifford A, McAllister D, Zielonka J, Joseph J, O’Hara CL, Stucky CL, Kanthasamy AG, Kalyanaraman B. 2014. A novel mitochondrially-targeted apocynin derivative prevents hyposmia and loss of motor function in the leucine-rich repeat kinase 2 (LRRK2(R1441G)) transgenic mouse model of Parkinson’s disease. Neurosci Lett. 583:159–164.
  • Drouin-Ouellet J, Cicchetti F. 2012. Inflammation and neurodegeneration: the story “retolled”. Trends Pharmacol Sci. 33(10):542–551.
  • Du P, Fan B, Han H, Zhen J, Shang J, Wang X, Li X, Shi W, Tang W, Bao C, et al. 2013. NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy. Kidney Int. 84(2):265–276.
  • Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, Wu J, Brownlee M. 2000. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA. 97(22):12222–12226.
  • Du Y, Cramer M, Lee CA, Tang J, Muthusamy A, Antonetti DA, Jin H, Palczewski K, Kern TS. 2015. Adrenergic and serotonin receptors affect retinal superoxide generation in diabetic mice: relationship to capillary degeneration and permeability. FASEB J. 29(5):2194–2204.
  • Du Y, Veenstra A, Palczewski K, Kern TS. 2013. Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc Natl Acad Sci USA. 110(41):16586–16591.
  • El-Benna J, Dang PMC, Gougerot-Pocidalo MA, Marie JC, Braut-Boucher F. 2009. p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases. Exp Mol Med. 41(4):217–225.
  • Falcão-Pires I, Palladini G, Gonçalves N, van der Velden J, Moreira-Gonçalves D, Miranda-Silva D, Salinaro F, Paulus WJ, Niessen HWM, Perlini S, et al. 2011. Distinct mechanisms for diastolic dysfunction in diabetes mellitus and chronic pressure-overload. Basic Res Cardiol. 106(5):801–814.
  • Finnemore H. 1908. CXLVI.–the constituents of Canadian hemp. Part I. Apocynin. J Chem Soc Trans. 93:1513–1519.
  • Fortepiani LA, Reckelhoff JF. 2005. Treatment with tetrahydrobiopterin reduces blood pressure in male SHR by reducing testosterone synthesis. Am J Physiol Integr Comp Physiol. 288(3):R733–R736.
  • Fuji S, Suzuki S, Naiki-Ito A, Kato H, Hayakawa M, Yamashita Y, Kuno T, Takahashi S. 2017. The NADPH oxidase inhibitor apocynin suppresses preneoplastic liver foci of rats. Toxicol Pathol. 45(4):544–550.
  • Gäbele E, Dostert K, Hofmann C, Wiest R, Schölmerich J, Hellerbrand C, Obermeier F. 2011. DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH. J Hepatol. 55(6):1391–1399.
  • Geraldes P, King GL. 2010. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 106(8):1319–1331.
  • Ghosh A, Kanthasamy A, Joseph J, Anantharam V, Srivastava P, Dranka BP. 2012. Anti-inflammatory and neuroprotective effects of an orally active apocynin derivative in pre-clinical models of Parkinson’s disease. J Neuroinflamm. 9:1–16.
  • Ghosh A, Langley MR, Harischandra DS, Neal ML, Jin H, Anantharam V, Joseph J, Brenza T. 2016. Mitoapocynin treatment protects against neuroinflammation and dopaminergic neurodegeneration in a preclinical animal model of Parkinson’s disease. J Neuroimmune Pharmacol. 11(2):259–278.
  • Gimenes R, Gimenes C, Rosa CM, Xavier NP, Campos DHS, Fernandes AAH, Cezar MDM, Guirado GN, Pagan LU, Chaer ID, et al. 2018. Influence of apocynin on cardiac remodeling in rats with streptozotocin-induced diabetes mellitus. Cardiovasc Diabetol. 17(1):1–8.
  • Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ. 2003. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 278(11):8869–8872.
  • Gorin Y, Block K. 2013. Nox4 and diabetic nephropathy: with a friend like this, who needs enemies? Free Radic Biol Med. 61:130–142.
  • Gulsin GS, Athithan L, McCann GP. 2019. Diabetic cardiomyopathy: prevalence, determinants and potential treatments. Ther Adv Endocrinol Metab. 10:2042018819834869.
  • Gupte RS, Floyd BC, Kozicky M, George S, Ungvari ZI, Neito V, Wolin MS, Gupte SA. 2009. Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver. Free Radic Biol Med. 47(3):219–228.
  • Gusarova V, O’Dushlaine C, Teslovich TM, Benotti PN, Mirshahi T, Gottesman O, Van Hout CV, Murray MF, Mahajan A, Nielsen JB, et al. 2018. Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes. Nat Commun. 9(1):2252.
  • Gustot A, Gallea JI, Sarroukh R, Celej MS, Ruysschaert JM, Raussens V. 2015. Amyloid fibrils are the molecular trigger of inflammation in Parkinson’s disease. Biochem J. 471(3):323–333.
  • Haraguchi M, Miyadera K, Uemura K, Sumizawa T, Furukawa T, Yamada K, Akiyama SI, Yamada Y. 1994. Angiogenic activity of enzymes. Nature. 368(6468):198.
  • Hart BA, Copray S, Philippens I. 2014. Apocynin, a low molecular oral treatment for neurodegenerative disease. Biomed Res Int. 2014:298020.
  • He Z, King GL. 2004. Microvascular complications of diabetes. Endocrinol Metab Clin North Am. 33(1):215–238.
  • Hou L, Sun F, Huang R, Sun W, Zhang D, Wang Q. 2019. Author’s accepted manuscript. Redox Biol. 22:101134.
  • Hougee S, Hartog A, Sanders A, Graus YMF, Hoijer MA, Garssen J, Van Den Berg WB, Van Beuningen HM, Smit HF. 2006. Oral administration of the NADPH-oxidase inhibitor apocynin partially restores diminished cartilage proteoglycan synthesis and reduces inflammation in mice. Eur J Pharmacol. 531(1–3):264–269.
  • Huntimer LM, Ross KA, Darling RJ, Winterwood NE, Boggiatto P, Narasimhan B, Ramer-Tait AE, Wannemuehler MJ. 2014. Polyanhydride nanovaccine platform enhances antigen-specific cytotoxic T cell responses. Technology. 02(02):171–175.
  • International Diabetes Federation. 2020. Facts & figures. Bruxelles (Belgium): International Diabetes Federation; [accessed 2020 Feb 1]. https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html.
  • Irdprapamongkol KRL, Ramb J, Uthiphongchai TUS, Urarit RUS, Risomsap CHS, Annhardt G, Vasti JIS. 2009. Vanillin suppresses metastatic potential of human cancer cells through PI3K inhibition and decreases angiogenesis in vivo. J Agric Food Chem. 57(8):3055–3063.
  • Jantaree P, Lirdprapamongkol K, Kaewsri W, Thongsornkleeb C, Choowongkomon K, Atjanasuppat K, Ruchirawat S, Svasti J. 2017. Homodimers of vanillin and apocynin decrease the metastatic potential of human cancer cells by inhibiting the FAK/PI3K/Akt signaling pathway. J Agric Food Chem. 65(11):2299–2306.
  • Ji H, Tang J, Li M, Ren J, Zheng N, Wu L. 2016. Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin. Drug Deliv. 23(2):459–470.
  • Jiang BH, Zheng JZ, Aoki M, Vogt PK. 2000. Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci USA. 97(4):1749–1753.
  • Jo EK, Kim JK, Shin DM, Sasakawa C. 2016. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 13(2):148–159.
  • Johnson DK, Schillinger KJ, Kwait DM, Hughes CV, McNamara EJ, Ishmael F, O’Donnell RW, Chang M-M, Hogg MG, Dordick JS, et al. 2002. Inhibition of NADPH oxidase activation in endothelial cells by ortho-methoxy-substituted catechols. Endothelium. 9(3):191–203.
  • Kato A, Naiki-Ito A, Nakazawa T, Hayashi K, Naitoh I, Miyabe K, Shimizu S, Kondo H, Nishi Y, Yoshida M, et al. 2015. Chemopreventive effect of resveratrol and apocynin on pancreatic carcinogenesis via modulation of nuclear phosphorylated GSK3β and ERK1/2. Oncotarget. 6(40):42963–42975.
  • Kaul R, Risinger AL, Mooberry SL. 2019. Microtubule-targeting drugs: more than antimitotics. J Nat Prod. 82(3):680–685.
  • Khan S, Jawdeh BGA, Goel M, Schilling WP, Parker MD, Puchowicz MA, Yadav SP, Harris RC, El-Meanawy A, Hoshi M, et al. 2014. Lipotoxic disruption of NHE1 interaction with PI(4,5)P2 expedites proximal tubule apoptosis. J Clin Invest. 124(3):1057–1068.
  • Kim E-K, Kwon K-B, Koo B-S, Han M-J, Song M-Y, Song E-K, Han M-K, Park J-W, Ryu D-G, Park B-H. 2007. Activation of peroxisome proliferator-activated receptor-gamma protects pancreatic beta-cells from cytokine-induced cytotoxicity via NF kappaB pathway. Int J Biochem Cell Biol. 39(6):1260–1275.
  • Konior A, Schramm A, Czesnikiewicz-Guzik M, Guzik TJ. 2014. NADPH oxidases in vascular pathology. Antioxid Redox Signal. 20(17):2794–2814.
  • Kumar Bhatt L, Addepalli V. 2011. Minocycline with aspirin: an approach to attenuate diabetic nephropathy in rats. Ren Fail. 33(1):72–78.
  • Kuwabara A, Nakade M, Tamai H, Tsuboyama-Kasaoka N, Tanaka K. 2014. The association between vitamin E intake and hypertension: results from the re-analysis of the national health and nutrition survey. J Nutr Sci Vitaminol. 60(4):239–245.
  • Laddha AP, Kulkarni YA. 2020. NADPH oxidase: a membrane-bound enzyme and its inhibitors in diabetic complications. Eur J Pharmacol. 881:173206.
  • Langley M, Ghosh A, Charli A, Sarkar S, Ay M, Luo J, Zielonka J, Brenza T, Bennett B, Jin H, et al. 2017. Mito-apocynin prevents mitochondrial dysfunction, microglial activation, oxidative damage, and progressive neurodegeneration in MitoPark transgenic mice. Antioxid Redox Signal. 27(14):1048–1066.
  • Lee KS, Kim SR, Park SJ, Park HS, Min KH, Jin SM, Lee MK, Kim UH, Lee YC. 2006. Peroxisome proliferator activated receptor-gamma modulates reactive oxygen species generation and activation of nuclear factor-kappaB and hypoxia-inducible factor 1alpha in allergic airway disease of mice. J Allergy Clin Immunol. 118(1):120–127.
  • Li L, Renier G. 2006. Activation of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase by advanced glycation end products links oxidative stress to altered retinal vascular endothelial growth factor expression. Metabolism. 55(11):1516–1523.
  • Li X, Zhang T, Geng J, Wu Z, Xu L, Liu J, Tian J, Zhou Z, Nie J, Bai X. 2019. Advanced oxidation protein products promote lipotoxicity and tubulointerstitial fibrosis via CD36/β-catenin pathway in diabetic nephropathy. Antioxid Redox Signal. 31(7):521–538.
  • Liu F, Fan LM, Michael N, Li JM. 2020. In vivo and in silico characterization of apocynin in reducing organ oxidative stress: a pharmacokinetic and pharmacodynamic study. Pharmacol Res Perspect. 8(4):e00635.
  • Liu J, Zhu Y, Chen S, Shen B, Yu F, Zhang Y, Shen R. 2018. Apocynin attenuates cobalt chloride-induced pheochromocytoma cell apoptosis by inhibiting P38-MAPK/caspase-3 pathway. Cell Physiol Biochem. 48(1):208–214.
  • Luchtefeld R, Luo R, Stine K, Alt ML, Chernovitz PA, Smith RE. 2008. Dose formulation and analysis of diapocynin. J Agric Food Chem. 56(2):301–306.
  • Le Master E, Huang RT, Zhang C, Bogachkov Y, Coles C, Shentu TP, Sheng Y, Fancher IS, Ng C, Christoforidis T, et al. 2018. Proatherogenic flow increases endothelial stiffness via enhanced CD36-mediated uptake of oxidized low-density lipoproteins. Arterioscler Thromb Vasc Biol. 38(1):64–75.
  • McCord JM, Fridovoch I. 1969. The utility of superoxide dismutase in studying free radical reactions. J Biol Chem. 244(22):6056–6063.
  • McCord JM, Fridovich I. 1988. Superoxide dismutase: the first twenty years (1968-1988). Free Radic Biol Med. 5(5–6):363–369.
  • Meng W, Shah KP, Pollack S, Toppila I, Hebert HL, McCarthy MI, Groop L, Ahlqvist E, Lyssenko V, Agardh E, et al. 2018. A genome-wide association study suggests new evidence for an association of the NADPH Oxidase 4 (NOX4) gene with severe diabetic retinopathy in type 2 diabetes. Acta Ophthalmol. 96(7):e811–e819.
  • Miyamoto K, Hiroshiba N, Tsujikawa A, Ogura Y. 1998. In vivo demonstration of increased leukocyte entrapment in retinal microcirculation of diabetic rats. Invest Ophthalmol Vis Sci. 39(11):2190–2194.
  • Miyamoto K, Ogura Y. 1999. Pathogenetic potential of leukocytes in diabetic retinopathy. Semin Ophthalmol. 14(4):233–239.
  • Mohamed EA, Zhao Y, Meshali MM, Remsberg CM, Borg TM, Abdel AM, Takemoto JK, Sayre CL, Martinez SE, Davies NM, et al. 2012. Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(dl-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine. J Pharm Sci. 101(10):3787–3798.
  • Montezano AC, Dulak-Lis M, Tsiropoulou S, Harvey A, Briones AM, Touyz RM. 2015. Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol. 31(5):631–641.
  • Nakajima Y, Gotanda T, Uchimiya H, Furukawa T, Haraguchi M, Ikeda R, Sumizawa T, Yoshida H, Akiyama S-I. 2004. Inhibition of metastasis of tumor cells overexpressing thymidine phosphorylase by 2-deoxy-L-ribose. Cancer Res. 64(5):1794–1801.
  • National Institute of Environmental Health Sciences. 2020. Neurodegenerative diseases. Research Triangle Park (NC): NIEHS; [accessed 2020 Feb 12]. https://www.niehs.nih.gov/research/supported/health/neurodegenerative/index.cfm.
  • Nishikawa T, Edelstein D, Du XL, Yamagishi SI, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, et al. 2000. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 404(6779):787–790.
  • Ohga S, Shikata K, Yozai K, Okada S, Ogawa D, Usui H, Wada J, Shikata Y, Makino H. 2007. Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-kappaB activation. Am J Physiol Renal Physiol. 292(4):F1141–F1150.
  • Okamura T, Okada M, Kikuchi T, Wakizaka H, Zhang MR. 2018. Kinetics and metabolism of apocynin in the mouse brain assessed with positron-emission tomography. Phytomedicine. 38:84–89.
  • Okuno Y, Fukuhara A, Hashimoto E, Kobayashi H, Kobayashi S, Otsuki M, Shimomura I. 2018. Oxidative stress inhibits healthy adipose expansion through suppression of SREBF1-mediated lipogenic pathway. Diabetes. 67(6):1113–1127.
  • Overman VP. 2006. American Diabetes Association. Int J Dent Hyg. 4(1):55–55.
  • Panday A, Sahoo MK, Osorio D, Batra S. 2015. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 12(1):5–23.
  • Paravicini TM, Touyz RM. 2008. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care. 31(2):S170–S180.
  • Paul S, Chakrabarty S, Ghosh S, Nag D, Das A, Dastidar DG, Dasgupta M, Dutta N, Kumari M, Pal M, et al. 2020. Targeting cellular microtubule by phytochemical apocynin exhibits autophagy-mediated apoptosis to inhibit lung carcinoma progression and tumorigenesis. Phytomedicine. 67:153152.
  • Pechánová O, Jendeková L, Vranková S. 2009. Effect of chronic apocynin treatment on nitric oxide and reactive oxygen species production in borderline and spontaneous hypertension. Pharmacol Reports. 61(1):116–122.
  • Peng JJ, Xiong SQ, Ding LX, Peng J, Xia XB. 2019. Diabetic retinopathy: focus on NADPH oxidase and its potential as therapeutic target. Eur J Pharmacol. 853:381–387.
  • Perassa LA, Graton ME, Potje SR, Troiano JA, Lima MS, Vale GT, Pereira AAF, Nakamune ACMS, Sumida DH, Tirapelli CR, et al. 2016. Apocynin reduces blood pressure and restores the proper function of vascular endothelium in SHR. Vascul Pharmacol. 87:38–48.
  • Perier C, Vila M. 2012. Mitochondrial biology and Parkinson’s disease. Cold Spring Harb Perspect Med. 2(2):1–20.
  • Peters EA, Hiltermann JT, Stolk J. 2001. Effect of apocynin on ozone-induced airway hyperresponsiveness to methacholine in asthmatics. Free Radic Biol Med. 31(11):1442–1447.
  • Petrônio MS, Zeraik ML, Da Fonseca LM, Ximenes VF. 2013. Apocynin: chemical and biophysical properties of a NADPH oxidase inhibitor. Molecules. 18(3):2821–2839.
  • Platania CBM, Leggio GM, Drago F, Salomone S, Bucolo C. 2018. Computational systems biology approach to identify novel pharmacological targets for diabetic retinopathy. Biochem Pharmacol. 158:13–26.
  • Potje SR, Troiano JA, Graton ME, Ximenes VF, Nakamune ACMS, Antoniali C. 2017. Hypotensive and vasorelaxant effect of Diapocynin in normotensive rats. Free Radic Biol Med. 106:148–157.
  • Qiu J, Zhao J, Li J, Liang X, Yang Y, Zhang Z, Zhang X, Fu H, Korantzopoulos P, Liu T, et al. 2016. NADPH oxidase inhibitor apocynin prevents atrial remodeling in alloxan-induced diabetic rabbits. Int J Cardiol. 221:812–819.
  • Qiu J, Zhao J, Li J, Liang X, Yang Y, Zhang Z, Zhang X, Fu H, Korantzopoulos P, Tse G, et al. 2017. Apocynin attenuates left ventricular remodeling in diabetic rabbits. Oncotarget. 8(24):38482–38490.
  • Rajagopalan S, Kurz S, Münzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG. 1996. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest. 97(8):1916–1923.
  • Ramasamy R, Goldberg IJ. 2010. Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model. Circ Res. 106(9):1449–1458.
  • Rezabakhsh A, Fathi F, Bagheri HS, Malekinejad H, Montaseri A, Rahbarghazi R, Garjani A. 2018. Silibinin protects human endothelial cells from high glucose-induced injury by enhancing autophagic response. J Cell Biochem. 119(10):8084–8094.
  • Rezabakhsh A, Rahbarghazi R, Malekinejad H, Fathi F, Montaseri A, Garjani A. 2019. Quercetin alleviates high glucose-induced damage on human umbilical vein endothelial cells by promoting autophagy. Phytomedicine. 56:183–193.
  • Robson DC, Burton GG. 2003. Cyclosporin: applications in small animal dermatology. Vet Dermatol. 14(1):1–9.
  • Roe ND, Thomas DP, Ren J. 2011. Inhibition of NADPH oxidase alleviates experimental diabetes-induced myocardial contractile dysfunction. Diabetes Obes Metab. 13(5):465–473.
  • Rosa CM, Gimenes R, Campos DHS, Guirado GN, Gimenes C, Fernandes AAH, Cicogna AC, Queiroz RM, Falcão-Pires I, Miranda-Silva D, et al. 2016. Apocynin influence on oxidative stress and cardiac remodeling of spontaneously hypertensive rats with diabetes mellitus. Cardiovasc Diabetol. 15(1):1–12.
  • Ross KA, Brenza TM, Binnebose AM, Phanse Y, Kanthasamy AG, Gendelman HE, Salem AK, Bartholomay LC, Bellaire BH, Narasimhan B. 2015. Nano-enabled delivery of diverse payloads across complex biological barriers. J Control Release. 219:548–559.
  • Schnackenberg CG, Welch WJ, Wilcox CS. 1998. Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic: role of nitric oxide. Hypertens. 32(1):59–64.
  • Sharma H, Hirko AC, King MA, Liu B. 2018. Role of NADPH oxidase in cooperative reactive oxygen species generation in dopaminergic neurons induced by combined treatment with dieldrin and lindane. Toxicol Lett. 299:47–55.
  • Sharma N, Kapoor M, Nehru B. 2016. Apocyanin, NADPH oxidase inhibitor prevents lipopolysaccharide induced α-synuclein aggregation and ameliorates motor function deficits in rats: possible role of biochemical and inflammatory alterations. Behav Brain Res. 296:177–190.
  • Sharma N, Nehru B. 2016. Apocyanin, a microglial NADPH oxidase inhibitor prevents dopaminergic neuronal degeneration in lipopolysaccharide-induced Parkinson’s disease model. Mol Neurobiol. 53(5):3326–3337.
  • Sheedfar F, Biase S, Di Koonen D, Vinciguerra M. 2013. Liver diseases and aging: friends or foes? Aging Cell. 12(6):950–954.
  • Shi LL, Lu J, Cao Y, Liu JY, Zhang XX, Zhang H, Cui JH, Cao QR. 2017. Gastrointestinal stability, physicochemical characterization and oral bioavailability of chitosan or its derivative-modified solid lipid nanoparticles loading docetaxel. Drug Dev Ind Pharm. 43(5):839–846.
  • Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, et al. 2012. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 36(3):401–414.
  • Simons JM, Hart BA, Ip Vai Ching TR, Van Dijk H, Labadie RP. 1990. Metabolic activation of natural phenols into selective oxidative burst agonists by activated human neutrophils. Free Radic Biol Med. 8(3):251–258.
  • Simonyi A, Serfozo P, Lehmidi TM, Cui J, Gu Z, Lubahn DB, Sun AY, Sun GY. 2012. The neuroprotective effects of apocynin. Front Biosci. 4:2183–2193.
  • Smith JD, Morton LD, Ulery BD. 2015. Nanoparticles as synthetic vaccines. Curr Opin Biotechnol. 34:217–224.
  • Soma D, Attari Z, Reddy MS, Damodaram A, Koteshwara KBG. 2017. Solid lipid nanoparticles of irbesartan: preparation, characterization, optimization and pharmacokinetic studies. Brazilian J Pharm Sci. 53(1):1–10.
  • Somers MJ, Mavromatis K, Galis ZS, Harrison DG. 2000. Vascular superoxide production and vasomotor function in hypertension induced by deoxycorticosterone acetate-salt. Circulation. 101(14):1722–1728.
  • Sorbara MT, Girardin SE. 2011. Mitochondrial ROS fuel the inflammasome. Cell Res. 21(4):558–560.
  • Stehlik C, Lee SH, Dorfleutner A, Stassinopoulos A, Sagara J, Reed JC. 2003. Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol. 171(11):6154–6163.
  • Sun Z, Satomoto M, Adachi YU, Kinoshita H, Makita K. 2016. Inhibiting NADPH oxidase protects against long-term memory impairment induced by neonatal sevoflurane exposure in mice. Br J Anaesth. 117(1):80–86.
  • Sung B, Park S, Yu BP, Chung HY. 2006. Amelioration of age-related inflammation and oxidative stress by PPARgamma activator: suppression of NF-kappaB by 2,4-thiazolidinedione. Exp Gerontol. 41(6):590–599.
  • Suryavanshi SV, Kulkarni YA. 2017. NF-κβ: a potential target in the management of vascular complications of diabetes. Front Pharmacol. 8:798.
  • Tabata S, Yamamoto M, Goto H, Hirayama A, Ohishi M, Kuramoto T, Mitsuhashi A, Ikeda R, Haraguchi M, Kawahara K, et al. 2018. Thymidine catabolism promotes NADPH oxidase-derived reactive oxygen species (ROS) signalling in KB and yumoto cells. Sci Rep. 8(1):6760.
  • Tain YL, Hsu CN, Huang LT, Lau YT. 2012. Apocynin attenuates oxidative stress and hypertension in young spontaneously hypertensive rats independent of ADMA/NO pathway. Free Radic Res. 46(1):68–76.
  • Tang ZY, Ye SL, Liu YK, Qin LX, Sun HC, Ye QH, Wang L, Zhou J, Qiu SJ, Li Y, et al. 2004. A decade’s studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol. 130(4):187–196.
  • Tawfik A, Sanders T, Kahook K, Akeel S, Elmarakby A, Al-Shabrawey M. 2009. Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase. Invest Ophthalmol Vis Sci. 50(2):878–884.
  • Thomas RL, Halim S, Gurudas S, Sivaprasad S, Owens DR. 2019. IDF diabetes atlas: a review of studies utilising retinal photography on the global prevalence of diabetes related retinopathy between 2015 and 2018. Diabetes Res Clin Pract. 157:107840.
  • Trumbull KA, McAllister D, Gandelman MM, Fung WY, Lew T, Brennan L, Lopez N, Morré J, Kalyanaraman B, Beckman JS. 2012. Diapocynin and apocynin administration fails to significantly extend survival in G93A SOD1 ALS mice. Neurobiol Dis. 45(1):137–144.
  • Unwin N. 2009. IDF diabetes atlas. 4th ed. Bruxelles (Belgium): International Diabetes Federation.
  • Ushio-Fukai M, Nakamura Y. 2008. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 266(1):37–52.
  • Vejražka M, Míček R, Štípek S. 2005. Apocynin inhibits NADPH oxidase in phagocytes but stimulates ROS production in non-phagocytic cells. Biochim Biophys Acta - Gen Subj. 1722(2):143–147.
  • Vela-Ramirez JE, Goodman JT, Boggiatto PM, Roychoudhury R, Pohl NLB, Hostetter JM, Wannemuehler MJ, Narasimhan B. 2015. Safety and biocompatibility of carbohydrate-functionalized polyanhydride nanoparticles. AAPS J. 17(1):256–267.
  • Vela Ramirez JE, Tygrett LT, Hao J, Habte HH, Cho MW, Greenspan NS, Waldschmidt TJ, Narasimhan B. 2016. Polyanhydride nanovaccines induce germinal center B cell formation and sustained serum antibody responses. J Biomed Nanotechnol. 12(6):1303–1311.
  • Venishetty VK, Chede R, Komuravelli R, Adepu L, Sistla R, Diwan PV. 2012. Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: a novel strategy to avoid intraduodenal administration. Colloids Surf B Biointerfaces. 95:1–9.
  • Vivanco I, Sawyers CL. 2002. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2(7):489–501.
  • Wang K, Li L, Song Y, Ye X, Fu S, Jiang J, Li S. 2013. Improvement of pharmacokinetics behavior of apocynin by nitrone derivatization: comparative pharmacokinetics of nitrone-apocynin and its parent apocynin in rats. PLoS One. 8(7):e70189.
  • Wang L, Zhou X, Yin Y, Mai Y, Wang D, Zhang X. 2019. Hyperglycemia induces neutrophil extracellular traps formation through an NADPH oxidase-dependent pathway in diabetic retinopathy. Front Immunol. 9:3076.
  • Wang Q, Smith RE, Luchtefeld R, Sun AY, Simonyi A, Luo R, Sun GY. 2008. Bioavailability of apocynin through its conversion to glycoconjugate but not to diapocynin. Phytomedicine. 15(6–7):496–503.
  • Welch WJ, Mendonca M, Aslam S, Wilcox CS. 2003. Roles of oxidative stress and AT1 receptors in renal hemodynamics and oxygenation in the postclipped 2K,1C kidney. Hypertension. 41(3):692–696.
  • World Health Organization. 2021a. Cardiovascular diseases. Geneva (Switzerland): WHO; [accessed 2021 Jan 30]. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
  • World Health Organization. 2021b. Hypertension. Geneva (Switzerland): WHO; [accessed 2021 Jan 30]. https://www.who.int/news-room/fact-sheets/detail/hypertension.
  • Wymann MP, Zvelebil M, Laffargue M. 2003. Phosphoinositide 3-kinase signalling-which way to target? Trends Pharmacol Sci. 24(7):366–376.
  • Ximenes VF, Kanegae MPP, Rissato SR, Galhiane MS. 2007. The oxidation of apocynin catalyzed by myeloperoxidase: proposal for NADPH oxidase inhibition. Arch Biochem Biophys. 457(2):134–141.
  • Xin R, Sun X, Wang Z, Yuan W, Jiang W, Wang L, Xiang Y, Zhang H, Li X, Hou Y, et al. 2018. Apocynin inhibited NLRP3/XIAP signalling to alleviate renal fibrotic injury in rat diabetic nephropathy. Biomed Pharmacother. 106:1325–1331.
  • Xu CS, Wang ZF, Huang XD, Dai LM, Cao CJ, Li ZQ. 2015. Involvement of ROS-alpha v beta 3 integrin-FAK/Pyk2 in the inhibitory effect of melatonin on U251 glioma cell migration and invasion under hypoxia. J Transl Med. 13(1):95.
  • Yang X, Okamura DM, Lu X, Chen Y, Moorhead J, Varghese Z, Ruan XZ. 2017. Cd36 in chronic kidney disease: novel insights and therapeutic opportunities. Nat Rev Nephrol. 13(12):769–781.
  • Yoshida T, Murayama H, Kawashima M, Nagahara R, Kangawa Y, Mizukami S, Kimura M, Abe H, Hayashi S, Mo, Shibutani M. 2017. Apocynin and enzymatically modified isoquercitrin suppress the expression of a NADPH oxidase subunit p22phox in steatosis-related preneoplastic liver foci of rats. Exp Toxicol Pathol. 69(1):9–16.
  • Younossi ZM. 2008. Review article: current management of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 28(1):2–12.
  • Yu L, Quinn MT, Cross AR, Dinauer MC. 1998. Gp91(phox) is the heme binding subunit of the superoxide-generating NADPH oxidase. Proc Natl Acad Sci USA. 95(14):7993–7998.
  • Zahiruddin S, Khan W, Nehra R, Alam MJ, Mallick MN, Parveen R, Ahmad S. 2017. Pharmacokinetics and comparative metabolic profiling of iridoid enriched fraction of Picrorhiza kurroa – an Ayurvedic herb. J Ethnopharmacol. 197:157–164.
  • Zalba G, Beaumont FJ, San José G, Fortuño A, Fortuño MA, Etayo JC, Díez J. 2000. Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Hypertension. 35(5):1055–1061.
  • Zhang L, Dong W, Li Q, Kang L, Zhang L, Lu Y, Zhai X. 2016. Diphenylene iodonium and apocynin reduce the translocation and level of p47phox in PBMCs of premature infants to inhibit reactive oxygen species production. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 32(1):59–62.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.